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Due to the assumption of normally distributed variables, conventional credit models have been criticized 

for not being able to identify possible extreme losses. As an alternative, some methods have incorporated 
non-normal variables in the estimation of the probability of default in loan portfolios and credit derivatives. 
One of the objectives of these methods is to express heavy tails of the distributions (which tends to better 
represent the reality of the credit market since economic and financial variables typically present more extreme 
occurrences than indicated by the normal distribution). However, as this paper shows, the derivation of some of 
these alternative models does not comply with all the assumptions implicit in the formula used to develop the 
models and this mistake results in misleading dependence measures. Our theoretical arguments are supported 
by simulations which show that, in terms of the calculation of regulatory capital for financial institutions, 
models for non-normal variables overestimate losses and this bias is substantial for high levels of confidence 
(up to 13 times higher than the losses observed in the simulated credit portfolio). We present some ideas to start 
solving this problem although the estimation of the dependence parameter is still an open question.  
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1. Introduction 

Credit models widely used in the financial market assume that losses and other relevant 
variables are normally distributed and normally dependent. Owing to certain properties of the 
univariate and the multivariate normal distributions, this presumption makes the calculations easier 
and accessible to more users (academics and practitioners). Nonetheless this relative simplicity 
comes at the expense of accuracy and potential extreme losses may be underestimated which can 
negatively affect, for example, research conclusions and the soundness of financial institutions.  

To overcome such limitations, non-normal variables have been inserted in some credit risk 
models in order to capture higher proportion of extreme events (than captured in approaches based 
on the normal distribution). We show in this paper that, although these methods have improved one 
aspect of the previous credit models (i.e. the unrealistic assumption of normality for each variable 
considered), they have created a new problem regarding the dependence across the variables 
studied given that important conditions inherent in their statistical formulation have been neglected. 
This drawback has been ignored in the literature and some authors have applied the alternative 
approach without realizing its flaw.  

Our simulations confirm that the dependence measures used in these alternative models do not 
correspond to the real dependence measure of the data when a distribution different from the 
normal was used to represent particular variables. As a consequence, estimates of losses in 
unfavorable scenarios are biased. We found that these models have the merit of avoiding the 
underestimation of losses in severe conditions but they result in highly overestimated losses which 
may be disadvantageous in some cases. Broadly speaking, the overestimation level decreases with 
the probability of default and increases with the confidence demanded. 

Moreover, the aforementioned methods for non-normal variables focus on the marginal 
(univariate) distributions of the variables and do not pay enough attention to the dependence 
structure that links the variables and also affects the probability of unexpected events. Inserting such 
connection structure into the analysis seems to be a way to find more accurate dependence 
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parameters and, consequently, to achieve more precise calculations of the probability of high losses. 
In this context, the main contributions of this paper are threefold. Firstly, we warn about the 

misleading dependence measures used in these recently suggested credit models such that their 
users are aware of their limitations and potential biases. Secondly, we show the origin of this 
inconsistency and its impact on the estimation of credit losses in extremely unfavorable scenarios. 
Thirdly, we indicate directions to the development of more precise models by highlighting the 
importance of the dependence structure in the estimation of extreme losses. To our knowledge, none 
of these contributions have been discussed in the literature so far. 

The paper proceeds as follows: in the next section, we explain how some credit models related 
to the estimation of the probability of default are derived by means of factor models when variables 
are assumed to be normally distributed. We also present some models suggested to deal with 
non-normal variables. In Section 3, we explain why the dependence measure employed in these 
alternative models is inaccurate and then we show the impact of this inaccuracy on the estimation of 
credit losses in severe conditions. Section 4 presents some ideas to start solving this problem. Section 
5 concludes. 

2. Credit Risk Models: Factor Models and the Assumption of Normality  

2.1. Measuring joint probability of default via factor models 

Structural credit models (originally proposed by Merton, 1974) consider that defaults happen 
when the return of obligors‟ assets (a latent variable) falls below a specific value (the amount needed 
to pay the outstanding debt). The probability of default (PD) is the probability of the obligors‟ asset 
returns falling below the threshold value. 

If we are interested in estimating the dependence across defaults of different obligors, we can 
use factor models which assume that the correlation among defaults is driven by the debtors‟ latent 
variables (see, for instance, Crouhy et al., 2000 and Bluhm et al., 2002). These underlying variables 
are impacted by common (systematic) factors that affect all obligors and specific (idiosyncratic) 
factors that have effect only on the respective borrowers. The idiosyncratic factors are assumed to be 
independent from one another and therefore do not contribute to asset return correlations which are 
exclusively determined by the systematic factors.  

We can simplify this model by considering that the asset returns of all borrowers are driven by 
only one common factor (the “economic status”) and by assuming that those latent variables (the 
asset returns) can be expressed as a linear function of the common (systematic) factor and the 
specific (idiosyncratic) risk: 

1 2i i
Y X

                                    
2.1 

where Yi is the latent variable of obligor i, X is the systematic factor, 
i
 is the idiosyncratic 

factor for obligor i, and β1 and β2 are coefficients that indicate how much of the variation in Yi  is 

explained by X and 
i
 respectively. 

Some popular credit models (for example, CreditMetrics and KMV) adopt approaches based 
on factor models and assume that the latent variable (Y), the single systematic factor (X), and the 
specific factor ( ) are standardized normally distributed. Each idiosyncratic risk is supposed to be 
uncorrelated with the systematic risk and the specific risks of all other obligors. For simplicity, all 

pairs of asset returns (i and j) are considered to present the same correlation (
ij

). The correlation 

between the systematic factor and the asset return of each debtor is denoted 
YX

. 

Owen and Steck (1962) showed that equally correlated and jointly standard normal variables (in 
our case, the latent variables of two obligors i and j for example) may be expressed as a function of 

their correlation coefficient (
ij

) and another two standard normal variables (here, X and 
i
). 

Therefore, considering all assumptions of credit models mentioned above, the coefficients β1 and β2  
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in (2.1) are associated with 
YX

 and (2.1) becomes1:  

1
i ij i ij
Y X

                               2.2 
where  

ij YX                                   2.3
 

since the idiosyncratic risk is assumed to be independent and all the variables are standardized 
with mean 0 and variance 1 (see proof in Moreira, 2011, Appendix A).  

Expression (2.2) does not hold for distributions other than the normal. So, the use of the 

correlation coefficient 
ij

 in a linear function to evaluate each latent variable Y is conditional on the 

normality of the variables involved (joint normality between Yi and Yj and univariate normality of  

X, 
i
, and 

j
). 

We can use (2.2) to derive a formula to estimate the probability of default conditional on 
particular events or on particular economic levels (downturns, for instance). As said before, for each 
loan i, the probability of default is the likelihood that the latent variable Yi becomes smaller than the 

cutoff yc, that is, Pr[ ]
i c

PD Y y . The probability of default, PD*, when the economy X reaches the 

level x*, is given by * Pr[ | *]
i c

PD Y y X x . Using (2.2), we have: 

* Pr[ 1 | *]
ij i ij c

PD X y X x  

Solving for 
i
 and replacing X with x*: 

*
* Pr

1

c ij

i

ij

y x
PD  

Since 
i
 is presumed to be normally distributed with mean 0 and variance 1, the previous 

equation turns into: 

*
*

1

c ij

ij

y x
PD

                                  2.4 
where  indicates the cdf (cumulative distribution function) of the standard normal 

distribution. 

Given that Yi is also normally distributed, ( )
c

PD y  which implies that 1( )
c
y PD , i.e. 

the cutoff of the latent variable below which default occurs is the inverse of the normal distribution, 
1 , evaluated at PD. The level of X when it is equal to x* refers to the area below the point x* in the 

X distribution. Denoting this area as *

X
A , we have * *( )

X
A x  and therefore * 1 *( )

X
x A . Thus, 

replacing yc and x* in (2.4), the probability of default conditional on the economic status x* becomes: 

1 1 *( ) ( )
*

1

ij X

ij

PD A
PD

                          2.5 

where *

X
A  indicates the economic level. Additional details on this derivation can be found in 

Schönbucher (2000) and Perli and Nayda (2004).  
(2.5) has a practical application, for example, in Basel Accords to determine the capital financial 

institutions should set aside to cover unexpected credit losses (with *

X
A  = 0.001 and 

                                                      
1 An expression equivalent to (2.2) is valid for Yj (by replacing 

i
 with 

j
). 
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1 1(0.001) (0.999)  which represents a confidence of 99.9%, i.e. the potential credit losses 

when the economy reaches the 99.9th worst scenario)2.  

2.2. Drawbacks of the normality assumption 

As seen above, the assumption of normality is essential for the derivation of credit models 
based on factor models but two aspects of this presumption are questionable. 

First, the normal distribution does not seem to be the most adequate distribution to characterize 

the variables considered in this case (Yi, X and 
i
). As Bernstein (1996) points out, normally 

distributed events are typical in natural phenomena but do not represent well facts derived from 
decisions made by people, such as in the field of economics and finance. Since Mandelbrot (1963) 
and Fama (1965), many empirical studies have corroborated this idea and have shown that, usually, 
returns of financial assets are not normally distributed. Other studies confirmed this for loan 
portfolios (e.g. Kalyvas et al, 2006 and Rosenberg and Schuermann, 2006). Bouyé et al. (2000) 
emphasize that, even though it is well known that asset returns are fat-tailed, people generally use 
normal processes to model financial returns because such methods have more tractable properties 
for computation. 

Second, and likely the most important in the context of portfolio evaluations, expression (2.5) 
implicitly assumes normal dependence between Yi and X (see Moreira, 2011) and therefore it is not 
able to identify different levels of connection among returns (or losses) in financial markets where 
extreme values tend to cluster. See, for instance, Embrechts et al. (2002) for financial assets in general 
and Di Clemente and Romano (2004) and Das and Geng (2006) for the specific case of credit 
portfolios. 

Thus the assumption of normality (especially concerning Y) may lead to misestimated PDs 
since, as said before, many empirical studies have demonstrated that asset returns are seldom 
normally distributed. Furthermore, the assumptions in terms of X and  are made for convenience 
and they may depart from the normality. 

Some models have been proposed to relax the assumption of normality in (2.5) so that the 
calculation of the probability of default can take into account the higher proportion of data in the 
tails of the distributions (which results in higher PDs) when compared to the normal distribution. 
Notwithstanding, as we show below, these models are limited to changes in the univariate 
distributions of the variables and do not try to improve the dependence structure. 

2.3. Some credit models suggested for non-normal variables 

Starting from (2.2), Hull and White (2004) relax the distributions3 of Yi, X and 
i
, such that 

they can, for example, present heavy tails (which tends to increase the joint occurrences of extreme 
realizations of the latent variables when compared to the joint normal distribution). Representing the 
distributions of those three variables respectively by F, G and H and following the same steps that 
derived (2.5) from (2.2), the expression to estimate the probability of default (Pr[Yi < yc])  
conditional on the status X = x* turns into: 

1 1 *( ) ( )
Pr[ | *]

1

ij X

i c

ij

F PD G A
Y y X x H

                    2.6

 

where *

X
A  is the area below the analyzed economic scenario x* in the distribution of X. PD is the 

(historical) probability of default and 
ij

 is the linear correlation between returns of obligors‟ assets. 

Obviously, the expression above cannot be solved unless the shapes of the three distributions F, G 
and H are known.  

                                                      
2 This approach was used in the second Basel Accord (Basel II) and was kept in Basel III. 
3 Provided that they are scaled with mean 0 and variance 1. 
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Hull and White (2004) employ this model4 (with X and 
i
 following the Student t distribution) 

to estimate the joint probability of default of obligors in credit derivatives (collateralized debt 
obligations, CDOs and credit default swap, CDS). Assuming we know the distribution F of the 
historical probability of default, we can estimate the probability of default when X = x* as:  

1 1 *( ) ( )
Pr[ | *]

1

ij v X

i c v

ij

F PD T A
Y y X x T

                      2.7 
where Tv is the Student t distribution with v degrees of freedom.  

Bluhm et al. (2002), Kang and Shahabuddin (2005) and Kostadinov (2005) have also suggested 

the Student t distribution for X and 
i
 to characterize the existence of more events (than the normal 

distribution) in the tails of credit portfolios‟ distributions. They obtain similar expressions that keep 
the basic structure of (2.6) and (2.7). Chan-Lau (2010) argues that the same reasoning could be 
applied in the context of the calculation of regulatory capital in financial institutions. 

3. Inaccuracy of the Dependence Measure Used in the Models for Non-Normal Variables 

Before we show that the dependence measure (correlation coefficient 
ij

) used in the models 

presented in Section 2.3 is not supported by their derivation from (2.2), it is necessary to review 
some basic concepts. 

3.1. Copulas and conditional distributions 

Copulas are functions that link univariate distributions to form joint distributions of the 
variables considered which, in turn, give the probability that all variables are simultaneously below 
some specific values regardless of the shape of the univariate distributions: 

1 1 1... 1 1 1
Pr[ ,..., ] ( ,..., ) ( ( ),..., ( ))

n n n n n n
Y y Y y F y y C F y F y  

where F(.) represents a cumulative distribution function and C  is a copula. Details on copulas 
can be found, for example, in Nelsen (2006) and Genest and Favre (2007). 

The cumulative distribution of a random variable conditional on other variables is given by the 
first derivative of the copula that expresses the dependence among the variables with respect to the 
conditioning variables (see Joe, 1996, Aas et al., 2009 and Czado, 2010): 

 

|
( ( | ), ( | ))

( | )
( | )

j jyx j j j

j j

C F y F x
F y

F x

x
x x

x
x

                          3.1 

where F(y|x) is the distribution of  Y  evaluated at y and conditional on vector x,
 

|j jyx
C

x is a 

copula, xj  is a component of vector x and x-j  is the vector x excluding this component. When x is 
univariate, the conditional distribution is calculated as: 

|

( ( ), ( ))
( | ) ( ( ) | ( ))

( )
yx

y x

C F y F x
F y x C F y F x

F x                      3.2 
where y and x are the conditioned and the conditioning variables respectively and the 

remaining notation follows the preceding formula. 
The Gaussian copula with normally-distributed marginals (which is implicit in some traditional 

credit risk models – see Li, 2000), for instance, has the first derivative given by (see Aas et al., 2009): 

                                                      
4 In fact, these authors focus on the probability of the time of default, ti, being smaller than a particular time t. As they state in 
their paper, this probability is equal to the probability of the obligors‟ asset returns Yi being smaller than the level of the cutoff 
point yc (which is the approach adopted here). 
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1 1

| 2

( ( )) ( ( ))
Pr[ | ] ( | )

1

Y YX X
Y X

YX

F y F x
Y y X x F y X x

              3.3 

where  and 1  represent the standard normal distribution and its inverse respectively, 

F(.|.) is a conditional distribution, F(.) is an unconditional distribution and 
YX

 is the Gaussian 

copula parameter5 between Y and X. 

3.2. The source of the shortcoming 

As shown in Section 2, Eq. (2.5) is directly derived from (2.2). Recall that the coefficients 
ij

 

and 1
ij

 in (2.2) are valid only if all the three variables considered (Yi, X and 
i
) follow the 

standard normal distribution. Hence, when this condition of normality is not met (even for only one 
of those three variables), we should start the derivation from (2.1) which implies the use of the 

unknown coefficients β1 and β2 rather than 
ij

 and 1
ij

. Nonetheless, the models cited in 

Section 3 are derived from (2.2) even though the distributions of the variables are assumed to be 
different from the normal distribution (Student t in the examples mentioned). So, the use of the 
linear correlation in (2.6) and (2.7) is not supported by any statistical or mathematical property. Note 
that (2.3) still holds for non-normally distributed variables (scaled with zero mean and unit variance) 
but this has no effect on the calculation of the conditional probability of default since the derivation 
should start from (2.1). 

Moreover, we can see that the probability of default conditional on X = x* expressed in (2.5), 
corresponds to the first derivative of the Gaussian copula (given by (3.3)) that connects Yi to X where 

12 ij
. When the idiosyncratic risk (

i
) is assumed to be normally distributed (function H in 

(2.6)), the dependence structure between Yi and X is kept the same as in the traditional models for 
normal variables (Gaussian copula) even if those two variables (Yi and X) are not normally 

distributed but, in this situation, 
12

 is not necessarily equal to 
ij

 (because the conditional 

probability of default, Pr[ | *]
i c
Y y X x , would be estimated from (2.1) and not from (2.2)).  

When the idiosyncratic risk departs from the normality, as in (2.7) where 
i
 follows the 

Student t distribution, the conditional probability of default is not associated with any copula family 

and, again, 
12

 is not necessarily equal to 
ij

 (for the same reason stated above). 

3.3. Impact of the inaccuracy on the estimation of credit losses in extreme scenarios 

3.3.1. For a given dependence between the systematic factor and the latent variables  

We ran simulations to test the impact of the theoretically inaccurate dependence measure 
ij

 

on estimates of credit losses in an area where factor models are used in practice. 
As mentioned in Section 2.1, expression (2.5) is suggested in Basel II to estimate the probability 

of default in exceptionally severe conditions (i.e. unexpected credit losses with confidence 0.999). 
However the assumption of normality for the variables considered limits the number of events in the 
tails of their distributions and, consequently, (2.5) tends to result in lower default probability than 
the losses observed in credit portfolios inasmuch as the literature has reported fat tails in loan 
returns (see Section 2.2). 

                                                      
5 The parameter of the Gaussian copula is usually represented by . We adopt the notation  to distinguish the Gaussian 
copula parameter from the linear correlation coefficient between the variables studied. These two measures of dependence are 
identical only when the marginal distributions are normal. 
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According to the approach described in Section 2.3, a way to avoid the underestimation of the 
capital required to cover unexpected losses is to presume that the losses and the economic factor 
follow the Student t distribution (which has “fat tails”). In our simulations ahead we assume that the 
latent variables (Y) and the systematic factor (X) are t distributed with v degrees of freedom while, 

for convenience, the idiosyncratic risk () is assumed to be normally distributed6. Thus, for a 

confidence level *

X
A , (2.7) can be written as: 

1 1 *( ) ( )
[ | *]

1

v ij v X

ij

T PD T A
PD X x

                         3.4 

where ij is the linear correlation between the latent variables that drive defaults in loans i and j, 

represents the cumulative distribution function of the standard normal distribution and 1

v
T  is 

the inverse of the standard Student t distribution with v degrees of freedom such that 
1 1(0.999) (0.001)

v v
T T . 

We tested five PDs (historical averages) 0.01, 0.03, 0.05, 0.07 and 0.10 (these are the expected 
losses in “typical” economic periods). For each PD, we considered four confidence levels (0.90, 0.95, 
0.99 and 0.999 where the last one is the parameter specified in Basel) and three degrees of freedom (v) 
for the standard Student t distributions of X and Y (10, 20 and 30). The simulations of all scenarios 
were repeated 1,000 times to reduce potential randomness effects on our conclusions and the results 
presented ahead are the mean of each of the variables computed. 

Since   is assumed to be normally distributed, the dependence structure between the 
systematic factor X and each latent variable Y (i.e., Yi and Yj) that drives default is given by the 
Gaussian copula (with t-distributed margins in this case) as we can see by comparing (3.3) to (3.4). 
Thus we simulated pairs of standard Student t variables in a Gaussian dependence structure such 

that the “true” (underlying) dependence YX between X and each Y resulted in specific values we 

wanted to test. Bear in mind that YX is equivalent to the parameter YX in (3.3) albeit, in that 
expression, the margins are normally distributed while in our simulations they follow Student t 

distributions. Hence, as said in Section 3.2, 
XY ij

 when the margins are normal but this 

equality does not hold when the margins have different distributions (which is the case in our 
simulations). 

Table 1 displays the probability of extreme credit losses estimated when YX = 0.10. Each panel 
refers to a PD value. So, as an example, in Panel A, we have the simulations for PD = 0.01. The first 
column (“Conf”) contains the four confidence levels. In the next six columns, each pair of columns is 
related to one of the three degrees of freedom of the standard Student t distributions of Y and X7. 
The second and third columns, for instance, give the results for v = 10. In this case, for the given 

(unobserved) YX = 0.10, we found ij = 0.1576. Therefore, 
ij

 = 0.3770.  

The column labeled “True” gives the unexpected losses computed when we plugged the “true” 

dependence (YX = 0.10) in place of 
ij

 in (3.4) and corresponds to the default rate in the 

simulated data (a proxy for credit portfolios of financial institutions). The column “Estimated” 

displays the unexpected losses computed when we used 
ij

 in (3.4) as advocated by the models 

for non-normal variables presented in Section 2.3.  
The unexpected losses predicted according to the latter approach were higher than the actual losses 

                                                      
6 As can be inferred from (3.3), the assumption of normally-distributed  leads to the first derivative of the bivariate Gaussian 
Copula (with two t-distributed margins) and this is essential for the simulations presented here. 
7 For simplicity, in each scenario, both distributions were assumed to have the same degrees of freedom but this presumption 
can be easily relaxed. 
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in the portfolios simulated for all confidence levels (i.e. the values in column “Estimated” were 
always greater than those in column “True”) and this difference increased with the confidence level. 
So, the conservative parameter suggested in Basel (0.999) leads to the highest overestimation of 
credit losses. This behavior was observed in all other scenarios simulated. The probability of default 
estimated based on (3.4) was, on average, five times higher than the observed default rates but 
reached an estimate more than 13 times higher than the observed losses in one particular scenario 
(PD = 0.01, v = 10 and confidence level = 0.999). Generally speaking, the overestimations reached the 
highest degree when PD = 0.01 and decreased monotonically until PD = 0.10. 

 
Table 1 

Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). 

“True” dependence YX = 0.10 

Panel A : PD = 0.01 

 v = 10 v = 20 v = 30 

 ij  = 0.1576 ij  = 0.1442 ij  = 0.1463 

 YX = 0.10 
ij

= 0.3770 YX = 0.10 
ij

= 0.3517 YX = 0.10 
ij

= 0.3545 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0041 0.0072 0.0041 0.0066 0.0041 0.0065 

0.950 0.0047 0.0123 0.0046 0.0104 0.0046 0.0102 

0.990 0.0062 0.0359 0.0058 0.0259 0.0057 0.0243 

0.999 0.0091 0.1251 0.0078 0.0716 0.0074 0.0629 

Panel B : PD = 0.03 

 v = 10 v = 20 v = 30 

 ij  = 0.1357 ij  = 0.1384 ij  = 0.1400 

 YX = 0.10 
ij

= 0.3404 YX = 0.10 
ij

= 0.3406 YX = 0.10 
ij

= 0.3415 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0231 0.0388 0.0229 0.0371 0.0228 0.0365 

0.950 0.0256 0.0568 0.0251 0.0528 0.0249 0.0517 

0.990 0.0319 0.1193 0.0303 0.1023 0.0297 0.0979 

0.999 0.0431 0.2661 0.0381 0.2012 0.0365 0.1854 

Panel C : PD = 0.05 

 v = 10 v = 20 v = 30 

 ij  = 0.1252 ij  = 0.1202 ij  = 0.1216 

 YX = 0.10 
ij

= 0.3248 YX = 0.10 
ij

= 0.3150 YX = 0.10 
ij

= 0.3170 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0461 0.0743 0.0457 0.0706 0.0455 0.0701 

0.950 0.0505 0.1016 0.0497 0.0936 0.0494 0.0923 

0.990 0.0613 0.1844 0.0586 0.1567 0.0577 0.1514 

0.999 0.0799 0.3439 0.0716 0.2640 0.0693 0.2474 

Panel D : PD = 0.07 

 v = 10 v = 20 v = 30 

 ij  = 0.1291 ij  = 0.1210 ij  = 0.1202 

 YX = 0.10 
ij

= 0.3353 YX = 0.10 
ij

= 0.3226 YX = 0.10 
ij

= 0.3230 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0704 0.1132 0.0698 0.1076 0.0695 0.1065 

0.950 0.0765 0.1499 0.0753 0.1379 0.0749 0.1356 

0.990 0.0913 0.2524 0.0875 0.2155 0.0863 0.2075 

0.999 0.1162 0.4292 0.1051 0.3375 0.1020 0.3157 

 



Inaccurate Dependence Measures in Credit Models for Non-Normal Variables                       167 

 
Table 1 (continued)  

Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). “True” 

dependence YX = 0.10 

Panel E : PD = 0.10 

 v = 10 v = 20 v = 30 

 ij  = 0.1321 ij  = 0.1192 ij  = 0.1247 

 YX = 0.10 
ij

= 0.3321 YX = 0.10 
ij

= 0.3137 YX = 0.10 
ij

= 0.3270 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.1073 0.1678 0.1065 0.1584 0.1062 0.1602 

0.950 0.1157 0.2148 0.1140 0.1965 0.1135 0.1984 

0.990 0.1355 0.3342 0.1304 0.2869 0.1288 0.2868 

0.999 0.1681 0.5087 0.1536 0.4136 0.1495 0.4067 

Notes: PD is the (historical) average probability of default. YX  is the “true” dependence between the latent 
variable (Yi in expression (2.7) which is implicit in (3.4)) that drives default and the systematic factor (X in (2.7) 
and (3.4)). The dependence structure between X and each Y is the Gaussian copula such that the calculation of 

the extreme losses can be done by simply changing the marginals of Y and X in (2.5). ij  is the linear 

correlation between latent variables Yi and Yj. 
ij

 is the dependence measure used to express the underlying 

“true” dependence YX. The degrees of freedom of the Student t distributions simulated are represented by v.  
“True” and estimated PDs are the probabilities of default estimated according to (3.4) for extreme scenarios 

(confidence levels “Conf”) by means of the “true” dependence parameter (YX) and the approximation 
ij

, 

respectively.  

 
We also tested other “true” dependence levels between X and Y and found analogous results. 

Table 2 presents the estimates for YX = 0.25 and the results for other values of YX are available upon 
request. 

 
Table 2  

Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). “True” 

dependence YX = 0.25 

Panel A : PD = 0.01 

 v = 10 v = 20 v = 30 

 ij  = 0.1501 ij  = 0.1620 ij  = 0.1601 

 YX = 0.25 
ij

= 0.3606 YX = 0.25 
ij

= 0.3710 YX = 0.25 
ij

= 0.3733 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0062 0.0070 0.0060 0.0066 0.0059 0.0066 

0.950 0.0085 0.0118 0.0080 0.0108 0.0078 0.0106 

0.990 0.0162 0.0348 0.0138 0.0287 0.0132 0.0262 

0.999 0.0372 0.1226 0.0264 0.0832 0.0239 0.0694 

Panel B : PD = 0.03 

 v = 10 v = 20 v = 30 

 ij  = 0.1450 ij  = 0.1446 ij  = 0.1393 

 YX = 0.25 
ij

= 0.3578 YX = 0.25 
ij

= 0.3581 YX = 0.25 
ij

= 0.3498 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0332 0.0400 0.0323 0.0382 0.0320 0.0373 

0.950 0.0425 0.0591 0.0405 0.0547 0.0399 0.0524 

0.990 0.0699 0.1254 0.0621 0.1057 0.0599 0.0974 

0.999 0.1313 0.2825 0.1014 0.2080 0.0940 0.1825 
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Table 2 (continued)  
Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). “True” 

dependence YX = 0.25 

Panel C : PD = 0.05 

 v = 10 v = 20 v = 30 

 ij  = 0.1608 ij  = 0.1680 ij  = 0.1703 

 YX = 0.25 
ij

= 0.3801 YX = 0.25 
ij

= 0.3841 YX = 0.25 
ij

= 0.3872 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0645 0.0813 0.0630 0.0786 0.0626 0.0779 

0.950 0.0801 0.1154 0.0768 0.1095 0.0758 0.1078 

0.990 0.1232 0.2207 0.1114 0.1963 0.1080 0.1893 

0.999 0.2109 0.4230 0.1698 0.3442 0.1592 0.3222 

Panel D : PD = 0.07 

 v = 10 v = 20 v = 30 

 ij  = 0.1722 ij  = 0.1750 ij  = 0.1734 

 YX = 0.25 
ij

= 0.3847 YX = 0.25 
ij

= 0.3962 YX = 0.25 
ij

= 0.3907 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0966 0.1228 0.0946 0.1203 0.0939 0.1180 

0.950 0.1175 0.1704 0.1132 0.1625 0.1117 0.1581 

0.990 0.1731 0.3037 0.1582 0.2718 0.1536 0.2590 

0.999 0.2791 0.5100 0.2305 0.4347 0.2173 0.4045 

Panel E : PD = 0.10 

 v = 10 v = 20 v = 30 

 ij  = 0.1513 ij  = 0.1383 ij  = 0.1539 

 YX = 0.25 
ij

= 0.3655 YX = 0.25 
ij

= 0.3452 YX = 0.25 
ij

= 0.3675 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.1439 0.1766 0.1413 0.1663 0.1404 0.1704 

0.950 0.1712 0.2295 0.1657 0.2098 0.1639 0.2161 

0.990 0.2407 0.3642 0.2225 0.3125 0.2172 0.3216 

0.999 0.3640 0.5607 0.3089 0.4530 0.2940 0.4598 

Notes: PD is the (historical) average probability of default. YX  is the “true” dependence between the latent 
variable (Yi in expression (2.7) which is implicit in (3.4)) that drives default and the systematic factor (X in (2.7) 
and (3.4)). The dependence structure between X and each Y is the Gaussian copula such that the calculation of 

the extreme losses can be done by simply changing the marginals of Y and X in (2.5). ij  is the linear 

correlation between latent variables Yi and Yj. 
ij

 is the dependence measure used to express the underlying 

“true” dependence YX. The degrees of freedom of the Student t distributions simulated are represented by v.  
“True” and estimated PDs are the probabilities of default estimated according to (3.4) for extreme scenarios 

(confidence levels) by means of the “true” dependence parameter (YX) and the approximation 
ij

, 

respectively.  

 
In principle, overestimated credit losses could be thought as advantageous in this regulatory 

environment but when they are excessive, as it is in some scenarios of our simulations, they become 
a problem for financial institutions given that unnecessary capital held as a buffer against potential 
losses lessens the amount of resources available to investments and resulting profits. 

As a robustness check, we ran additional simulations based on the dependence structure 

implied in (2.5) to confirm whether the dependence measure 
ij

 is really equal to YX when all 

the margins are normally distributed. The results are reported in Table 3 for the same parameters 

considered above (YX, PD, v and confidence). Panels A and B are respectively related to YX = 0.10  
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Table 3  

Unexpected credit losses estimated when all variables are normally distributed (for given YX) 

Panel A: YX = 0.10 

 PD = 0.01 PD = 0.03 PD = 0.05 PD = 0.07 PD = 0.10 

ij  = 0.01 
YX = 0.10 

ij
= 0.10 YX = 0.10 

ij
= 0.10 YX = 0.10 

ij
= 0.10 YX = 0.10 

ij
= 0.10 YX = 0.10 ij

= 

0.10 

Confidence “True” Estimated “True” Estimated “True” Estimated “True” Estimated “True” Estimate
d 

0.900 0.0136 0.0136 0.0391 0.0391 0.0637 0.0637 0.0877 0.0877 0.1231 0.1231 

0.950 0.0149 0.0149 0.0423 0.0423 0.0684 0.0684 0.0937 0.0937 0.1307 0.1307 

0.990 0.0176 0.0176 0.0489 0.0489 0.0778 0.0778 0.1056 0.1056 0.1458 0.1458 

0.999 0.0212 0.0212 0.0572 0.0572 0.0896 0.0896 0.1202 0.1202 0.1640 0.1640 

Panel B: YX = 0.25 

 PD = 0.01 PD = 0.03 PD = 0.05 PD = 0.07 PD = 0.10 

ij  = 0.0625 
YX = 0.25 

ij
= 0.25 YX = 0.25 

ij
= 0.25 YX = 0.25 

ij
= 0.25 YX = 0.25 

ij
= 0.25 YX = 0.25 ij

= 

0.25 

Confidence “True” Estimated “True” Estimated “True” Estimated “True” Estimated “True” Estimate
d 

0.900 0.0192 0.0192 0.0535 0.0535 0.0857 0.0857 0.1164 0.1164 0.1604 0.1604 

0.950 0.0240 0.0240 0.0645 0.0645 0.1013 0.1013 0.1358 0.1358 0.1844 0.1844 

0.990 0.0358 0.0358 0.0898 0.0898 0.1361 0.1361 0.1780 0.1780 0.2349 0.2349 

0.999 0.0544 0.0544 0.1261 0.1261 0.1839 0.1839 0.2341 0.2341 0.2996 0.2996 

Notes: PD is the (historical) average probability of default. YX is the “true” dependence between the latent variable (Yi  in expression (2.7) which is implicit in (3.4)) 
that drives default and the systematic factor (X in (2.7) and (3.4)). The dependence structure between X and each Y is the Gaussian copula such that the calculation of 

the extreme losses can be done via (2.5). ij is the linear correlation between latent variables Yi and Yj. 
ij

 is the dependence measure used to express the 

underlying “true” dependence YX. “True” and estimated PDs are the probabilities of default estimated according to (3.4) for extreme scenarios (confidence levels) by 

means of the “true” dependence parameter (YX) and the approximation 
ij

, respectively. In this table, the results are the same for the “true” and the estimated 

losses since all the variables are normal and, consequently,
ij YX

 (up to the fourth decimal place in our simulations). 
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and YX = 0.25. We see that 
ij

= YX  in all scenarios and, therefore, the losses estimated 

according to (2.5) are the same for both dependence measures8.  

3.3.2. For a given correlation among latent variables 

In the previous section, we simulated the variables X, Yi and Yj as if we knew the dependence 

between them (YX). After that, we checked the resultant correlation ij between Yi and Yj  and then 

compared potential losses estimated via 
ij

 with losses estimated by means of YX.  

Nonetheless a more realistic approach would be to start from a given correlation between the 

latent variables (Yi and Yj) since YX is not observable. The value of ij for different credit classes was 

calibrated in Basel II. For credit cards and mortgages, e.g., ij  is equal to 0.04 and 0.15, respectively. 
The correlations in other classes are estimated as a function of PD (see BCBS, 2006 for more details). 

In this section, we simulated standard t-distributed variables X, Yi and Yj such that ij  resulted 
in some specific values given in Basel (the aforementioned correlations for credit cards and 

mortgages). Then we checked the resultant YX  and used it to compute the “true” extreme losses 

which were compared to the losses estimated in accordance with the assumption that 
ij

 

represents relationship between X and each Y.  
As in Section 3.3.1, we analyzed five (historical) average PDs (0.01, 0.03, 0.05, 0.07 and 0.10), 

three values for the degree of freedom of the Student t distributions of X, Yi and Yj (10, 20 and 30) 

and four confidence levels (0.90, 0.95, 0.99 and 0.999).  See Tables 4 and 5 for ij = 0.04 and ij  = 
0.15, respectively, where each panel pertains to a PD value. 

The results corroborated our prior findings since, for all scenarios, the losses estimated by 

means of the dependence parameter 
ij

 were larger than the („true”) losses observed in the 

simulated data (i.e., 
ij YX

). The main difference was that the overestimation level was roughly 

constant for all PDs tested (whilst such level decreased with PD in Tables 1 and 2). Therefore, this is 
additional evidence in favor of our conclusion that the models cited in Section 2.3 tend to 

overestimate extreme losses. It is interesting to note that YX decreased monotonically with PD 
levels. 

Further simulations for normally distributed variables (as in Table 3) confirmed that, when we 

start from a given linear correlation between the latent variables (ij), the resultant YX equals to
ij

(up to the fourth decimal place in our simulations). For the sake of brevity, the unexpected losses 
estimated in these conditions are not presented here. 

 
Table 4  

 Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). 

“True” correlation ij  = 0.04 

Panel A : PD = 0.01 

 v = 10 v = 20 v = 30 

 ij  = 0.04 ij  = 0.04 ij  = 0.04 

 YX = 0.1722 
ij

= 0.20 YX = 0.1722 
ij

= 0.20 YX = 0.1722 
ij

= 0.20 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0051 0.0056 0.0050 0.0055 0.0044 0.0053 

0.950 0.0064 0.0072 0.0061 0.0070 0.0051 0.0066 

0.990 0.0101 0.0123 0.0090 0.0112 0.0068 0.0101 

0.999 0.0187 0.0248 0.0145 0.0195 0.0094 0.0163 

                                                      
8 This equality was observed up to the fourth decimal place. 
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Table 4 (continued)  
Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). “True” 

correlation ij  = 0.04 

Panel B : PD = 0.03 

 v = 10 v = 20 v = 30 

 ij  = 0.04 ij  = 0.04 ij  = 0.04 

 YX = 0.1457 
ij

= 0.20 YX = 0.1457 
ij

= 0.20 YX = 0.1457 
ij

= 0.20 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0261 0.0294 0.0257 0.0281 0.0256 0.0277 

0.950 0.0303 0.0357 0.0294 0.0332 0.0292 0.0324 

0.990 0.0413 0.0531 0.0383 0.0459 0.0374 0.0439 

0.999 0.0626 0.0896 0.0526 0.0673 0.0500 0.0619 

Panel C : PD = 0.05 

 v = 10 v = 20 v = 30 

 ij  = 0.04 ij  = 0.04 ij  = 0.04 

 YX = 0.1353 
ij

= 0.20 YX = 0.1353 
ij

= 0.20 YX = 0.1353 
ij

= 0.20 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0503 0.0595 0.0497 0.0589 0.0494 0.0586 

0.950 0.0569 0.0715 0.0555 0.0699 0.0551 0.0693 

0.990 0.0733 0.1037 0.0689 0.0968 0.0676 0.0946 

0.999 0.1032 0.1674 0.0895 0.1412 0.0858 0.1340 

Panel D : PD = 0.07 

 v = 10 v = 20 v = 30 

 ij  = 0.04 ij  = 0.04 ij  = 0.04 

 YX = 0.1219 
ij

= 0.20 YX = 0.1219 
ij

= 0.20 YX = 0.1219 
ij

= 0.20 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.0740 0.0831 0.0732 0.0839 0.0729 0.0841 

0.950 0.0819 0.0958 0.0803 0.0963 0.0798 0.0964 

0.990 0.1010 0.1278 0.0960 0.1252 0.0945 0.1241 

0.999 0.1343 0.1862 0.1192 0.1700 0.1152 0.1651 

Panel E : PD = 0.10 

 v = 10 v = 20 v = 30 

 ij  = 0.04 ij  = 0.04 ij  = 0.04 

 YX =  
ij

= 0.20 YX =  
ij

= 0.20 YX =  
ij

= 0.20 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.900 0.1074 0.1295 0.1065 0.1310 0.1063 0.1314 

0.950 0.1159 0.1487 0.1141 0.1499 0.1136 0.1501 

0.990 0.1357 0.1963 0.1306 0.1931 0.1291 0.1918 

0.999 0.1685 0.2798 0.1539 0.2580 0.1499 0.2514 

Notes: PD is the (historical) average probability of default. YX  is the “true” dependence between the latent 
variable (Yi in expression (2.7) which is implicit in (3.4)) that drives default and the systematic factor (X in (2.7) 
and (3.4)). The dependence structure between X and each Y is the Gaussian copula such that the calculation of 

the extreme losses can be done by simply changing the marginals of Y and X in (2.5). ij  is the linear 
correlation between latent variables Yi and Yj (in this case, it is set equal to 0.04, which is the value defined in 

Basel Accord for credit cards).
ij

 is the dependence measure used to express the underlying “true” 

dependence YX. The degrees of freedom of the Student t distributions simulated are represented by v.  “True” 
and estimated PDs are the probabilities of default estimated according to (3.4) for extreme scenarios (confidence 

levels) by means of the “true” dependence parameter (YX) and the approximation 
ij

, respectively. 
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Table 5  
Unexpected credit losses estimated by means of inaccurate dependence measures (Student t variables). “True” 

correlation ij  = 0.15 

Panel A : PD = 0.01 

 v = 10 v = 20 v = 30 

 ij  = 0.15 ij  = 0.15 ij  = 0.15 

 YX = 0.2916 
ij

= 0.3873 YX = 0.2916 
ij

= 0.3873 YX = 0.2916 
ij

= 0.3873 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.90 0.0067 0.0078 0.0065 0.0073 0.0064 0.0071 

0.95 0.0097 0.0129 0.0091 0.0114 0.0088 0.0110 

0.99 0.0203 0.0345 0.0171 0.0260 0.0162 0.0238 

0.999 0.0520 0.1105 0.0354 0.0644 0.0316 0.0548 

Panel B : PD = 0.03 

 v = 10 v = 20 v = 30 

 ij  = 0.15 ij  = 0.15 ij  = 0.15 

 YX = 0.2221 
ij

= 0.3873 YX = 0.2221 
ij

= 0.3873 YX = 0.2221 
ij

= 0.3873 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.90 0.0313 0.0420 0.0306 0.0406 0.0303 0.0402 

0.95 0.0391 0.0609 0.0374 0.0575 0.0369 0.0564 

0.99 0.0612 0.1237 0.0549 0.1076 0.0532 0.1029 

0.999 0.1092 0.2778 0.0861 0.2090 0.0803 0.1911 

Panel C : PD = 0.05 

 v = 10 v = 20 v = 30 

 ij  = 0.15 ij  = 0.15 ij  = 0.15 

 YX = 0.2002 
ij

= 0.3873 YX = 0.2002 
ij

= 0.3873 YX = 0.2002 
ij

= 0.3873 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.90 0.0583 0.0817 0.0572 0.0795 0.0568 0.0788 

0.95 0.0695 0.1129 0.0671 0.1075 0.0664 0.1058 

0.99 0.0993 0.2069 0.0912 0.1837 0.0888 0.1768 

0.999 0.1578 0.4030 0.1304 0.3193 0.1234 0.2965 

Panel D : PD = 0.07 

 v = 10 v = 20 v = 30 

 ij  = 0.15 ij  = 0.15 ij  = 0.15 

 YX = 0.1987 
ij

= 0.3873 YX = 0.1987 
ij

= 0.3873 YX = 0.1987 
ij

= 0.3873 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.90 0.0873 0.1221 0.0858 0.1194 0.0853 0.1185 

0.95 0.1024 0.1634 0.0992 0.1568 0.0983 0.1547 

0.99 0.1411 0.2797 0.1307 0.2529 0.1277 0.2449 

0.999 0.2132 0.4968 0.1800 0.4094 0.1712 0.3849 

 Panel E : PD = 0.10 

 v = 10 v = 20 v = 30 

 ij  = 0.15 ij  = 0.15 ij  = 0.15 

 YX = 0.1758 
ij

= 0.3873 YX = 0.1758 
ij

= 0.3873 YX = 0.1758 
ij

= 0.3873 

Conf “True” Estimated “True” Estimated “True” Estimated 

0.90 0.1253 0.1797 0.1236 0.1756 0.1231 0.1743 

0.95 0.1423 0.2315 0.1388 0.2222 0.1377 0.2193 

0.99 0.1840 0.3671 0.1730 0.3343 0.1698 0.3246 

0.999 0.2566 0.5920 0.2238 0.5005 0.2150 0.4742 
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Notes: PD is the (historical) average probability of default. YX  is the “true” dependence between the latent 
variable (Yi in expression (2.7) which is implicit in (3.4)) that drives default and the systematic factor (X in (2.7) 
and (3.4)). The dependence structure between X and each Y is the Gaussian copula such that the calculation of 

the extreme losses can be done by simply changing the marginals of Y and X in (2.5). ij  is the linear 
correlation between latent variables Yi and Yj (in this case, it is set equal to 0.15, which is the value defined in 

Basel Accord for mortgages).
ij

 is the dependence measure used to express the underlying “true” 

dependence YX. The degrees of freedom of the Student t distributions simulated are represented by v.  “True” 
and estimated PDs are the probabilities of default estimated according to (3.4) for extreme scenarios (confidence 

levels) by means of the “true” dependence parameter (YX) and the approximation 
ij

, respectively. 

4. Suggestions Towards a Solution 

Given that the change of the distributions of Yi, X and 
i
 and the estimation of the conditional 

probability of default derived from (2.1) or (2.2) are not compatible with the Gaussian copula, one 
way out could be the use of the first derivative of other copula families (following (3.2)9) which may 
capture distinct relationship structures, such as tail dependence, between Yi and X irrespective of 
their distributions. The first derivative of some bivariate copulas are presented, e.g., in Joe (1997, 
Chapter 5) and in Aas et al. (2009, Appendix C). In the case of the Gaussian copula with normal 
margins (as in (3.3)), the first derivative has the form: 

 

1 1 *1 1 *

2

( ) ( )( ) ( )
Pr[ | *]

11

ij XYX X
i c

ijYX

PD APD A
Y y X x  

 

where 
YX

 is the parameter of the copula related to Yi and X. In this case, this parameter is 

equal to the linear correlation between those two variables (
YX YX

) which, according to (2.3), is 

equal to the square root of the linear correlation between the latent variables Y of two equicorrelated 

loans i and j ( )
ij YX

. Thus, if we can calculate 
ij

 (which is assumed, for example, in Basel 

Accords), we can find the copula parameter YX and then calculate the conditional probability of 
default. The remaining notation follows (3.3). 

However, this relationship across the abovementioned dependence measures is not valid when 
we employ the Gaussian structure with non-normal margins (as in (2.7) when H is normally 
distributed and F and G have other distributions) or any other copula structure and, therefore, it is 
not possible to infer the copula parameter that indicates the dependence between Yi and X from a 
dependence measure between loans‟ latent variables (Yi and Yj, for example). So, in these situations, 
we face the challenge of estimating the copula parameter between Yi and X based on a dependence 
measure (linear correlation or rank correlation, for instance) across the latent variables of pairs of 
loans (Yi and Yj, for example). Up to this point, to the best of our knowledge, the link between the 
dependence measures pertaining to Yi and X and to Yi and Yj  is unknown apart from the case of 
the Gaussian structure with normally distributed margins. So, finding this link seems to be the next 
step towards a solution to define accurate dependence measures and to estimate the probability of 
default conditional on specific events or on specific economic scenarios without assuming that all 
variables are normally distributed. 

5. Conclusions 

Many popular credit risk models assume that returns of obligors‟ assets are normally 
distributed, not only individually (univariate normal distribution for each debtor‟s asset returns) but 

                                                      
9 If multiple factors are assumed to impact the latent variable Yi, (3.1) should be used. 
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also at the portfolio level (joint distribution of asset returns represented by the multivariate normal). 
However it is well known that asset returns (loans included) are not normally distributed and 
present tail dependence. Therefore these traditional approaches are not able to capture possible 
strong association among high losses and are prone to underestimate the probability of joint extreme 
losses. 

Some models have relaxed the assumption of univariate normality and therefore have the 
advantage of identifying more occurrences of extreme values (when compared to methods founded 
on the normal distribution). Nonetheless we showed that, in spite of this benefit, such models are 
based on dependence measures incompatible with some presumptions implicit in the formula used 
in their derivation and, according to our simulations, this bias results in considerable overestimation 
of losses in some cases (especially for low default probabilities and high confidence levels).  

As underestimated losses are a problem in risk management, excessively overestimated losses 
also have a downside in some circumstances. This is the case of the computation of the capital 
required to cover unexpected credit losses in financial institutions. Even though this might seem to 
be interesting from the regulatory standpoint, when institutions hold excessive capital (more than 
effectively necessary to cover losses) they miss opportunities of investing resources and profiting 
from them.  

The models that incorporate non-normal variables are limited to changes in the marginal 
distributions and do not analyze the dependence structure (copula) between the systematic factor 
and the latent variables that drive defaults. An alternative way to relax both assumptions of 
normality (univariate and multivariate) and still to guarantee accurate dependence parameters is to 
use conditional distributions which are given by the first derivatives of copulas. However this 
solution is not complete yet as we do not know the connection between a dependence measure 
related to the loans (or their latent variables) and a dependence measure that associates the 
systematic (economic) factor to the latent variable of each loan. So, while this drawback persists, the 
models mentioned in Section 2.3 remain as an option to avoid the potential underestimation of the 
probability of default due to the unrealistic assumption of normality but users must keep in mind 
the limitation concerning the imprecision of the dependence measure and the consequent 
overestimation.  
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