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We estimate the Constant Elasticity of Variance (CEV) model in order to study the level of nonlinearity in 

the volatility dynamic. We also estimate a CEV process combined with a jump process (CEVJ), and analyze the 
effects of the jump component on the nonlinearity coefficient. We investigate whether there is complementarity 
or competition between the jumps and the CEV specification since both are intended to address the 
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1. Introduction 

The performance of any option pricing model is evaluated by its ability to fit at-the-money call 
and put prices which represent liquid instruments actively traded in financial markets. Furthermore, 
in response to the increasing demand for deep in-the-money and deep out-of-the-money options by 
hedgers and speculators, more complex option pricing models were introduced. A convenient way 
to evaluate their performance is to compute the model-implied Black and Scholes volatilities and 
compare them to their market counterparts. We observe that the market-implied volatility is 
typically higher for in-and out-of-the-money call options compared to at-the-money calls. Plotting 
the strike versus implied volatility produces therefore a U-shaped curve, known as the smirk. There 
has been limited success in the literature to find a model which perfectly fits the smirk. One surmises 
that this is due to the fact that all popular options pricing models share the common feature of 
having linear specifications for the volatility dynamic. In fact, the existing literature on stochastic 
volatility offers scant evidence on nonlinear models. In particular, the degree of nonlinearity implied 
from returns and options data and the role of jump processes in a nonlinear context are not 
investigated in a consistent manner which would allow for comparison. We attempt to understand 
these issues using a set of S&P500 returns and European call options. 

We should note that the existing literature uses linear specifications in the volatility dynamic 
because they allow closed-form solutions for option prices facilitating their empirical 
implementation. The most popular empirical implementations include the original version of Heston 
(1993) to which jumps in returns and volatility can be added. See, for example, Bakshi, Cao and 
Chen (1997), Chernov and Ghysels (2000), Pan (2002), Eraker (2004), and Eraker, Johannes and 
Polson (2003).  
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Nonlinear models, in particular the CEV and CEVJ models, have not been the preferred choice 
for empirical investigations. Therefore, few researchers implement them compared to the extensive 
literature on linear models. New evidence shows that nonlinear specifications may lead to a better fit 
for option prices. Recent findings using a set of options and daily returns conclude that the Heston 
(1993) model, while more convenient and computationally easy, is dominated by a continuous time 
stochastic volatility model where the diffusion term is quadratic. See Christoffersen et al. (2006), 
Ait-Sahalia and Kimmel (2007), and Jones (2003). We adopt these findings and use nonlinear models 
as building blocks to explore better specifications.  

We investigate two nonlinear models: the CEV model which has been previously estimated in a 
small number of empirical papers, and the CEV model with jumps i.e., CEVJ. The (CEV) 
specification has been investigated in interest rate literature in a number of papers, and has been 
applied to stochastic volatility processes by Chacko and Viceira (2003), Lewis (2000), Jones (2003) 
and Ait-Sahalia and Kimmel (2007). 

One drawback to CEV models is that they do not generally satisfy some sufficient conditions for 
a number of important results including the global growth and Lipschitz conditions. However, Jones 
(2003) shows that violations of growth and Lipschitz conditions outside the range sample data are 
less critical to certain estimation techniques, whose calculations are all conditional on the observed 
sample. The estimation methodology we employ in this paper belongs to these techniques. 

Our paper makes two main contributions. First, it estimates the models on S&P500 returns and 
on multiple cross sections of European call options. This options data set is richer than the one used 
by Jones (2003) and Ait-Sahalia and Kimmel (2007), and the nonlinearity coefficient is estimated 
using options with different maturities. Our empirical implementation uses the particle-filtering 
technique in order to conduct a fair comparison between the estimates obtained using returns and 
those obtained using options. We therefore assess whether nonlinearity is an option phenomenon 
which is not present in returns, or if it is a characteristic of both data. Second, we investigate the 
effects of jumps on the degree of nonlinearity and on the model fit. To our knowledge, Chacko and 
Viceira (2003) is the only study to include jumps in a nonlinear volatility model, but they use returns 
only. Hence, we believe that the estimation of the CEVJ model using options could prove very 
informative. The principal reason why the existing literature does not study the CEVJ model using 
options is the computational challenge to compute option prices by Monte Carlo simulation. This 
burden is greatly reduced thanks to our estimation methodology which extracts easily the 
unobserved variance needed to obtain option prices. 

The Heston (1993) model is also estimated and will serve as a reference. This model has a 
“quasi” closed-form solution for option prices. However, to ensure consistency, we estimate all 
models by Monte-Carlo simulation. Therefore, the three models we study will be directly 
comparable and differences across models cannot be related to the estimation methodology. 

Our empirical results show clearly that nonlinearity is confirmed by returns and options alike, 
and that the level of nonlinearity obtained from returns and options is of the same order of 
magnitude. We also find evidence that the inclusion of jumps does not affect the degree of 
nonlinearity. It is therefore more likely that the two features are complementary rather than 
competitive, as concluded by Chacko and Viceira (2003). 

We employ two different sources of data to estimate the models. First, we estimate the 
parameters on S&P500 returns. Although stochastic volatility models are motivated by the need to fit 
option prices, estimation on returns only is very common. Indeed, we typically aim to avoid 
overfitting by using the return estimates to price options. Second, we use a combination of daily 
returns and at-the-money European call options to estimate the models. 

When we estimate the models on returns, we use the Maximum Likelihood Importance 
Sampling (MLIS) technique introduced by Pitt (2002) who proposes a likelihood approximation and 
shows its efficiency in the presence of unobserved states. His likelihood estimator is a by-product of 
the particle filter which uses the true dynamic of returns to compute the approximate likelihood. 
This method belongs to the Simulated Maximum Likelihood techniques.  
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To estimate the CEV and CEVJ models on options, we use Christoffersen et al. (2006) 
methodology based on an iterative Nonlinear Least Squares (NLS) procedure. Since neither the CEV 
nor the CEVJ models admit a closed-form solution, option prices are computed by Monte Carlo 
simulations. This adds considerably to the computational burden in estimation. 

In both data sets, the variance path is filtered from daily returns using the Sampling Importance 
Resampling (SIR) particle filter of Gordon et al. (1993) which is suitable for nonlinear state space 
applications. This method allows the models to be estimated using returns only, and using returns 
and options. In addition, it is easy to implement empirically. 

The paper is organized as follows. Section 2 presents the CEV and CEVJ models. Section 3 
describes the particle-filtering technique used to obtain the variance conditional densities. It then 
presents the estimation methodology based on those conditional densities using returns and using 
returns and options jointly. In section 4 we present the empirical results. Finally, section 5 concludes. 

2. The CEV and the CEVJ models 

 The most general model that we investigate, the CEVJ model, is defined by the following two 
equations under the physical measure 
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 In this paper, we consider jumps only in returns. The effects of jumps in the variance dynamic are 
left for future research. Eraker (2004) estimates a model with correlated jumps in returns and variance. 
Because this model is not parsimonious and because there is no empirical evidence on the role of 
jumps in variance, we do not include the model for estimation. 

 When we set 0=ttNdJ  in the CEVJ model, the jump component vanishes and we obtain the 

Lewis (2000) CEV model. Hence, the CEV model is defined by the following two equations 
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When 0=ttNdJ  in the CEVJ model and   is deliberately set equal to 1/2, then the CEVJ model 

reduces to the Heston (1993) defined by the following two equations 
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 Models (1) and (2) share the same expression for the variance process. The only difference is the 
inclusion of jumps in the price dynamic of the CEVJ model. In what follows, we study the impact of 
including jumps on the estimate of the nonlinearity coefficient ,  and its implications on the model 
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fit when we use returns and when we use options. In fact, while most of the literature on linear 
models shows the importance of jumps in prices, estimation of those models based on options offers 
mixed results. Some infer that there are no economic benefits to including jumps, whereas others find 
tremendous improvements in fit. Eraker (2004) reports an improvement in fit of 1%. Bates (2000) finds 
an improvement of circa 2%. Broadie, Chernov and Johannes (2007) find a 50% improvement in fit by 
adding jumps in prices to the SV model, but their empirical setup is different from ours and from 
most of the literature. It is therefore interesting to investigate these effects in a nonlinear context. 

3. The Estimation Methodology 

 In order to estimate the models on returns and on options we ascertain to know the conditional 
distribution of the volatility at each time step. To this end, we apply the particle-filtering technique. 
For more details on the particle-filtering technique and its applications in the context of the 
estimation on returns and options, see Christoffersen et al. (2006). 
 In what follows, we describe how we can derive the conditional densities and outline, in the 
appendix, all the steps required to obtain them in the context of the CEV and CEVJ models. 

3.1. Model Estimation Using Returns 

 We first examine the MLIS approach of estimating the CEV and CEVJ models. Pioneered by Pitt 
(2002), the method computes an approximate likelihood when the state is unobserved. Not only does 
the technique apply to general models, but it does not require efforts, and it is not model specific. It is 
fully consistent with the returns dynamic since, in this setup the variance is treated as endogenous, 
and is estimated at the same time as the parameters. 
Pitt (2002) shows that, in the context of particle filters, the likelihood is given by the following 
equation 
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Gallant (1997) and Geweke (1989) for further details on Kolmogorov's strong law of large numbers. 
The computation of the Log likelihood is therefore a by-product of the particle filter, and extra 
computation is not incurred. 
 The objective function to be maximized is therefore given by 
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The estimation of the models using returns requires the following three steps. First, for a given set of 

candidate parameters, we compute the weights  N
t

k

t 1=
  using the particle filter approach described 

in the appendix. Second, we evaluate the objective function given by (6). Third, the optimizer 
proposes a new set of parameters and the procedure restarts until the objective function (6) is 
maximized. 

3.2. Model Estimation Using Options 

The risk-neutral dynamic of the CEVJ model implied by equation (1) is given by 
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 The CEVJ model with jumps does not admit a closed form solution. Therefore, option prices must 
be computed by Monte Carlo simulations. Estimating the CEVJ model by NLS requires the following 
steps. First, we choose a set of starting points for the parameters of the model and filter the volatility 
using the Gordon et al. (1993) particle filter described in the appendix. Next, option prices are 
computed by Monte Carlo simulations. Finally, the following objective function is evaluated. 
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The parameter T  is the total number of days where option prices are observed, tn  is the number of 
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Finally, the discretized version of the Heston (1993) model is 
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Again, the objective function (9) is minimized using Monte Carlo simulations until the set of optimal 
parameters is reached. 

4. Empirical Results 

 In this section, we evaluate the models described by equations (1), (2) and (3), initially using returns 
and then using European call options and returns. We propose to investigate the level of nonlinearity 
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implied by options and by returns, and then include jumps to study the effects on the nonlinearity 
coefficient. 

4.1. Data 

 We evaluate the models on returns using two S&P500 return sample periods. The first sample 
relates to the period from January 2, 1987 to December 31, 2004, and includes the 1987 crash whereas 
in the second sample, relating to the period from January 2, 1990 to December 31, 2004, we exclude 
the year 1987 as well as the three subsequent years which might have been indirectly affected by the 
extreme volatility recorded around the crash. We utilize closing prices from the CRSP database. Table 
1 contains some statistics about the sample periods. The chosen samples are representative of 
previous empirical studies using returns. In fact, the standard deviation, skewness, and kurtosis of 
returns are of the same order of magnitude as any typical sample used in the literature. 

 
Table 1 

Summary Statistics for Daily S&P500 Returns 

Statistics 1987-2004 1990-2004 1990-1995 

Mean 8.5299 7.7710 8.9412 

Volatility 17.3837 16.0826 11.4270 

Skewness -2.0894 -0.1020 -0.0997 

Kurtosis 44.4628 3.7922 2.4402 

Min -22.8997 -7.1139 -3.7272 

Max 8.7089 5.5732 3.6642 

Notes: We provide summary statistics for daily S&P500 index for the two samples used in the MLIS estimation 
form January 2, 1987 to December 31, 2004, and from January 2, 1990 to December 31, 2004. We provide the same 
summary statistics for the sample used to estimate the models on options. 

 
 To evaluate the model on returns and options we use at-the-money (ATM) European call options 
on the S&P500 index for the period 1990-1995.  We apply the same filters to the data as in Bakshi, 
Cao and Chen (1997). We use Wednesday data since it is the day of the week least likely to be a 

holiday. A call option is considered ATM if the forward stock price ),( TtF  divided by the strike 

price ,K  is equal to 1. Since this equality is not typically fulfilled for the available set of options for 

each Wednesday, we choose the options closest to ATM. 
We use a volatility updating rule on the 252 days predating the first Wednesday used in the 
evaluation sample. We initialize this volatility updating rule as the model's unconditional variance. 
 Table 2 presents descriptive statistics of the options data by maturity for the period 1990-1995.  

 
Table 2 

 S&P500 Index Call Option Data, 1990-1995. 

 Number of Call Option 
Contracts 

Average Call Price Average Implied 
Volatility from Call 

Options 
DTM<20 282 4.350 0.146 
20<DTM<80 1,170 8.510 0.142 
80<DTM<180 722 14.480 0.150 
DTM>180 1,101 23.010 0.155 
All 3,275 14.340 0.149 

Notes: The sample contains At the Money (ATM) European call options on the S&P500 index. We use quotes 
within 30 minutes from closing on every Wednesday during the January 1, 1990 to December 31, 1995 period. 
The moneyness is determined as defined in the data section. 
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 There are 3,275 contracts, the largest group among them of maturities ranging from 20 days to 80 
days. The average call price is 14.34 dollars and the average volatility is around 15%, somewhat 
higher than the sample volatility of the S&P500 index for the period 1990-1995 as reported in Table 1. 
These features indicate that the sample at hand is standard. The top panel of Figure I gives some 
indication about the pattern of implied volatility over time. We present the average implied volatility 
of the options on each Wednesday. It is evident from Figure I that substantial clustering occurs in 
implied volatilities. It is also evident that volatility is higher in the early part of the sample. 

 
Figure I 

Average Weekly Implied Volatility in the S&P500 Option Data and the CBOE VIX 

 
Notes: The top panel plots the average implied Black-Scholes volatility each Wednesday during 
1990-1995. The average is taken across maturities and strike prices using the call options in our 
data set. For comparison, the bottom panel shows the one-month, at-the-money VIX volatility 
index retrieved from the CBOE website. 

4.2. Discussion of the Results 

4.2.1. Estimation Using Historical Returns 

 Table 3 contains the parameter estimates and their standard deviations for the sample period 
January 2, 1987 to December 31, 2004.2 Column 3 of Table 3 presents the results for the CEV model 
from which it is clear that the nonlinearity coefficient   differs significantly from 0.5. This suggests 

that use of returns data rejects the Heston (1993) model in favor of a more general CEV specification. 
 We now review the values of the other parameters of the model. We see that the speed of mean 
reversion is around 2.18; this is expected, since many empirical studies have shown the volatility to be 
very persistent. Our estimate of the mean reversion implies a daily persistence of around 99.13%. The 

annualized long-run mean volatility   is around 20.42%. This value is also not surprising because 

our sample period is characterized overall by several volatile periods including the 1987 crash. The 

                                                      
2The standard errors are computed using conventional first-order techniques 
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volatility of the volatility parameter is 2.21. The correlation between returns and volatility is around 
-0.67 confirming most empirical findings in the literature according to which negative skewness is 
present in the distribution of the S&P500 index; see, for example, Benzoni (2002), and Pan (2002) for 
empirical evidence on the skewness of returns distribution. Finally, the value of the parameter 
associated with the risk premium is high. This parameter has been poorly estimated in the literature 
which is also the case in this paper, and is confirmed by the relatively high standard deviation. Hence, 
we will not arrive at conclusions from this estimate except to observe that, using a conventional 
confidence interval, this parameter is positive which suggests that investors expect a risk premium to 
hold the index. 

 
Table 3 

 Parameter Estimates Using S&P500 Returns Data, 1987-2004. 

Parameters 
Heston CEV CEVJ 

Estimate 
Standard 

Error 
Estimate 

Standard 
Error 

Estimate 
Standard 

Error 

  4.5381 0.5295 2.1752 0.6102 1.4200 0.5914 

  0.0302 0.0021 0.0417 0.0080 0.0350 0.0199 

  0.4184 0.0103 2.2131 0.2723 8.8611 1.0256 

  -0.5546 0.0290 -0.6676 0.0269 -0.6016 0.0911 

S
  3.1879 1.4289 4.1721 1.7687 8.4424 2.5400 

      0.9300 0.0425 1.3378 0.0371 

J
         -6.0672 4.3123 

J
         0.2653 9.1210 

J
         2.2024 0.5338 

Log 
Likelihood 

15,780.37   15,818.15   15,834.55   

Annualized 
volatility (%) 

17.39   20.41   18.71   

Daily 
persistence 
(%) 

98.20   99.14   99.44   

Notes: We estimate the Heston, the CEV and CEVJ models using daily S&P500 returns from January 2, 1987 to 
December 31, 2004. Columns 1, 3 and 5 contain the parameter estimates for the Heston, the CEV and the CEVJ 
models respectively. Columns 2, 4 and 6 contain their corresponding standard deviation. 

 
 Column 5 of Table 3 contains the estimates for the CEVJ model. It is apparent that, when we add 
jumps to the model, the coefficient of nonlinearity rises even higher and changes from 0.93 in the CEV 
model to 1.34 in the CEVJ model. Our result posits that the inclusion of jumps does not rule out 
nonlinearity and directly contradicts the findings of Chacko and Viceira (2003). Therefore, evaluation 
of the CEVJ model using options data is aimed at investigating the robustness of the results obtained 
using daily S&P500 returns. 
 We also find a slightly higher persistence of approximately 99.44% in line with reports in most of 
the stochastic volatility literature. The unconditional volatility drops to around 18.71%; this implies 
that the data become less demanding on this parameter in the presence of jumps. The parameter 
determining the volatility of volatility is higher and the correlation is of the same order of magnitude 
as in the CEV model, although somewhat lower. 
 Turning now to the jump process parameters, we find that the jump size has a negative mean of 
around -2.41% daily and that the jump intensity is very small, at around 2.2 jumps per year. This low 
intensity confirms the infrequent occurrence of jumps in the financial data. Figure II-A presents the 
estimated jump sizes and jump probabilities using the estimates of the CEVJ model from Table 3. See 
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Johannes, Polson and Stroud (2006) for details on how to estimate the jump sizes and jump 
probabilities using the SIR particle filter. The top panel clearly displays the large negative drop in 
returns that occurred in October 1987. The middle- and bottom panels show that the particle filter is 
able to detect this jump. Overall, we conclude from Figure II-A that almost all jumps are of negative 
size and that jumps are very infrequent. In fact, adopting the yardstick of Johannes et al. (2006) that a 
jump is present if its estimated probability is greater than 0.5, we count a mere 12 jumps in 18 years. 
 

Figure II-A 
Estimated Jump Sizes and Probabilities Using the SIR Particle Filter for Historical Returns Data 1987-2004 

 
Notes to Figure: The top panel plots the daily S&P500 returns for the period January 2, 1987 to 
December 31, 2004. The middle panel plots the estimated jump sizes obtained using the particle 
filter. Finally, the bottom panel represents the jump probabilities obtained by applying the same 
particle filter. The middle and bottom panels are obtained using the returns estimates in Table 3. 

 
Table 4 contains the estimates of parameters for the three models when the 1987 crash and the 

three subsequent years are not included. Comparing the CEV and CEVJ models, it is noticed that, 
even with this set of returns data, the Heston (1993) model is rejected in favor of a nonlinear 
specification. All the other parameter estimates move in the expected direction. In fact, we obtain 
lower persistence, lower long run volatility, and lower level for the nonlinearity coefficient. We 
obtain almost the same correlation as in the 1987-2004 sample. The jump size and jump intensity are 
remarkably lower than when the 1987 crash is included. Figure II-B highlights the extent by which the 
estimated jump sizes and probabilities are smaller for the sample 1990-2004, indicating the nontrivial 
impacts of excluding the 1987 crash on the estimates of the jump process parameters. 
For reference, we may compare our estimates to the existing results in the literature. Indeed, the 
value of the mean reversion parameter is similar not only to the value obtained by Ait-Sahalia and 
Kimmel (2007) using the VIX index as a proxy for the daily spot volatility, but also to the value 
obtained by Jones (2003) which is around 4. We should stress, however, that the results in Table 3 are 
not directly comparable to their findings. 
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Table 4 
Parameter Estimates Using S&P500 Returns Data, 1990-2004. 

Parameters 
Heston CEV CEVJ 

Estimate 
Standard 

Error Estimate 
Standard 

Error Estimate 
Standard 

Error 

  3.3857 0.5442 2.5818 0.9208 2.6070 0.9116 

  0.0254 0.0026 0.0287 0.0056 0.0268 0.0135 

  0.3097 0.0156 1.8667 0.5322 2.0274 0.4992 

  -0.6561 0.0337 -0.6739 0.0338 -0.6885 0.0828 

S
  3.4885 2.1915 3.2887 2.1914 3.1763 3.2103 

      0.9283 0.0843 0.9488 0.0798 

J
      -2.0574 3.2133 

J
          1.5252 0.7954 

J
          1.0215 0.5623 

Log Likelihood 13,417.08   13,433.60   13,434.92   

Annualized 
volatility (%) 

15.94   16.95   16.36 
  

Daily 
persistence 
(%) 

98.66   98.98   98.97 
  

Notes: We estimate the Heston, the CEV and CEVJ models using daily S&P500 returns from January 2, 1990 to 
December 31, 2004. Columns 1, 3 and 5 contain the parameter estimates for the Heston, the CEV and the CEVJ 
models respectively. Columns 2, 4 and 6 contain their corresponding standard deviation. 

 
Figure II-B 

Estimated Jump Sizes and Probabilities Using the SIR Particle Filter for Historical Returns Data 1990-2004  

 
Notes to Figure: The top panel plots the daily S&P500 returns for the period January 2, 1990 to December 31, 
2004. The middle panel plots the estimated jump sizes obtained using the particle filter. Finally, the bottom panel 
represents the jump probabilities obtained by applying the same particle filter. The middle and bottom panels 
are obtained using the return estimates in Table 4. 
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Figure III 

Daily Log likelihood (L) Difference: (CEV)L(CEVJ)L tt   

 
Notes to Figure: We plot the difference in Log likelihood observation by observation for the 
periods January 2, 1987 to December 31, 2004, and January 2, 1990 to December 31, 2004. The 
difference represents the Log likelihood of the CEVJ model less the Log likelihood of the 
CEV model. 

 
-itude. However, a closer look at the top panel of Figure III, which plots the difference between daily 
Log likelihood over the period January 2, 1987 to December 31, 2004, reveals that the difference stems 
from one observation corresponding to the October 1987 crash. This result is similar to the findings of 
Christoffersen et al. (2006) where they compare different models for S&P500 dynamics. In fact, they 
find that some of the differences in Log likelihood across models vanish when one observation is 
removed from their sample. We conclude therefore that the difference of 16 points in Log likelihood 
between the CEV and the CEVJ models is fully explained by the 1987 crash. Table 4 and the bottom 
panel of Figure III confirm this finding since when we estimate the models excluding the 1987 crash 
we obtain almost the same Log likelihood. 
 Tables 3 and 4 show clearly that the CEV and CEVJ models have considerably better fit compared 
to the Heston (1993) model for the two estimation periods. 
 Overall, we find that returns seem to favor a nonlinear specification regardless of inclusion of the 
1987 crash. We also ascertain that jumps and nonlinearity are complementary in the sense that the 
presence of jumps does not rule out the importance of nonlinearity. 

4.2.2. Estimation Using Options Data 1990-1995 

 Table 5 exhibits the results of the estimation of the CEV and the CEVJ models using options. The 
third column in Table 5 contains the estimates for the CEV model. The coefficient of nonlinearity is 
slightly lower than the estimates obtained from returns, suggesting that options may require less 
nonlinearity. However, our estimate of the nonlinearity coefficient indicates clearly that options data 
rejects the linear specification. 
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Table 5 
 Parameter Estimates Using European Call Options on the S&P500 Index, 1990-1995. 

Parameters 
Heston CEV CEVJ 

Estimate 
Standard 

Error Estimate 
Standard 

Error Estimate 
Standard 

Error 

  0.1970 0.0145 0.1824 0.0190 0.1784 0.0175 

  0.0907 0.0072 0.0740 0.0064 0.0756 0.0107 

  0.1043 0.0041 0.2107 0.0314 0.2267 0.0267 

  -0.8690 0.0088 -0.8604 0.0140 -0.8847 0.0184 

S
  1.7879 3.4485 1.7735 3.8425 1.9111 11.3695 

V
  0.0174 0.0369 0.0157 0.0504 0.0153 0.1040 

     0.8200 0.0414 0.7958 0.0376 

J
        -4.9965 9.9098 

J
        0.4843 16.7820 

J
        0.8368 0.2996 

*

J
        -5.0030 7.8746 
*

J
        0.9864 0.2020 

RMSE 1.4555   1.3833   1.3584   

Annualized 
volatility (%) 

30.12   27.20   27.49 
  

Daily 
persistence 
(%) 

99.92   99.93   99.93 
  

Notes: We estimate the models using Wednesday Options on the S&P500 Index for the period 1990 to 1995. 
Columns 1, 3 and 5 contain the parameter estimates for the Heston, the CEV and the CEVJ models respectively. 
Columns 2, 4 and 6 contain their corresponding standard deviation. 

  
 For the other parameters of the model, we notice that the speed of mean reversion is lower when 
we estimate the model on options compared to the estimate in Table 3. Hence, we may conclude that 
option data imply strong persistence in the volatility; at around 99.9% slightly higher than the 
persistence obtained using returns only. The correlation coefficient is approximately -0.86. The 
negative correlation is a standard result in the literature that we observe when we estimate stochastic 
volatility models on any set of data. The long-run volatility is around 27%, and is close to the results 
obtained with returns but somewhat higher than the volatility in Table 1. We should stress that, even 
though this parameter varies considerably in the stochastic volatility literature, it always falls within 
a reasonable interval around the sample volatility. Ait-Sahalia and Kimmel (2007), for example, find 
an unconditional volatility of around 21%. Eraker, Johannes and Polson (2003) find it 15%. The risk 

premium associated with the volatility dynamic V  is small and statistically not significant. The fact 

that many empirical papers set this parameter to zero seems, therefore, to be a realistic assumption; 

see, for example, Ait-Sahalia and Kimmel (2007). Next, the risk premium coefficient S  related to 

returns is quite variable but always remains positive, suggesting again that investors expect a 
premium for holding risky assets. Its value is in line with the estimate obtained using returns. 
 At this stage, a few remarks on some of the parameters values are in order. In fact, the correlation 
implied from options is higher than that implied from returns. This finding is confirmed by Eraker 
(2004) and by Christoffersen et al. (2006). Our estimate is lower than the correlation obtained in 
Christoffersen et al. (2006) using the same estimation technique. We believe that this paper's use of 
longer samples of options data permits more accurate identification of the level of correlation.   
However, the estimate reported in Eraker (2004) using options but a different estimation 
methodology yields a correlation ranging from -0.57 to -0.59, which is even lower than that of our 
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results. But, as observed by Eraker (2004) there is no consensus in the literature on the level of this 
parameter. Few papers estimate the level of nonlinearity   from returns and options. Our estimate 

is higher than the one obtained by Ait-Sahalia and Kimmel (2007) and lower than that by Jones (2003). 
Column 5 of Table 5 contains the estimates of the CEVJ model. The options data confirm our findings 
using returns since the coefficient of nonlinearity remains almost unchanged when we add jumps to 
the CEV model. This result further supports the complementary nature of nonlinearity and jumps. 
 At this stage, a few remarks on some of the parameters values are in order. In fact, the 
correlation implied from options is higher than that implied from returns. This finding is confirmed 
by Eraker (2004) and by Christoffersen et al. (2006). Our estimate is lower than the correlation 
obtained in Christoffersen et al. (2006) using the same estimation technique. We believe that this 
paper's use of longer samples of options data permits more accurate identification of the level of 
correlation.    
 However, the estimate reported in Eraker (2004) using options but a different estimation 
methodology yields a correlation ranging from -0.57 to -0.59, which is even lower than that of our 
results. But, as observed by Eraker (2004) there is no consensus in the literature on the level of this 
parameter. Few papers estimate the level of nonlinearity   from returns and options. Our estimate 

is higher than the one obtained by Ait-Sahalia and Kimmel (2007) and lower than that by Jones (2003). 
Column 5 of Table 5 contains the estimates of the CEVJ model. The options data confirm our findings 
using returns since the coefficient of nonlinearity remains almost unchanged when we add jumps to 
the CEV model. This result further supports the complementary nature of nonlinearity and jumps. 
 Turning now to the other model parameters we see that the inclusion of jumps increases the 
persistence. This result is in line with the findings of Eraker (2004) in the context of linear models. 
What is surprising is that the unconditional estimate of the variance is higher than in the CEV model. 
In fact, we expect that the inclusion of jumps will lower the unconditional variance since the data 
becomes less demanding on this parameter in the presence of jumps. However, as we are going to see 
later in this paper, jumps do not add much to the model in terms of improving the fit. The parameter 
  and the coefficient of nonlinearity are in the same order of magnitude as in the CEV model. 

Finally, jumps have a large negative mean around -1.98% daily and are very infrequent at around 0.84 
jumps per year. As we pointed out, including jumps does not improve the model fit. In fact, the 
RMSE declines from 1.38 to 1.36, which cannot be considered a large benefit. This result confirms the 
findings of Bates (2000) and Eraker (2004) but contradicts those of Broadie et al. (2007).  However, the 
results of Broadie et al. (2007) are not directly comparable with our results. First, they use a linear 
specification for the volatility process, whereas we use a nonlinear specification. Second, their model 
parameterization allows all the parameters to have a risk premium and, therefore, differ under 
objective and risk-neutral measures, whereas we use a much more parsimonious specification. 
Finally, the options data they use and the periods they cover differ from those we use in our sample.  
 Figure IV elaborates on the potential reasons for the similarity in performances between the CEV 
and CEVJ models. The top panel of Figure IV shows that the weekly RMSE from the CEVJ- and the 
CEV models are almost indistinguishable. The bottom panel investigates further the difference 
between the RMSEs obtained from the two models. An obvious pattern cannot be inferred. These 
findings, coupled with the results obtained from returns, stress that the difference in fit, when we add 
jumps to the CEV model, is very small. This is to be expected when we examine the top and bottom 
panels of Figure V. In fact, the first- and second columns of Figure V show that the residuals obtained 
from the CEV- and CEVJ models generate empirical distributions having both tails similar to the 
standard normal. This finding does not appear to depend on whether we estimate the model on 
returns or on options. Moreover, when comparing the residuals of the CEV model to those of the 
CEVJ we observe from the right column of Figure V that their empirical CDFs are almost the same. 
This similarity may explain why these models do equally well in fitting options data. Finally, Table 5 
clearly shows that the fit of the CEV and CEVJ models is much better than that of the Heston (1993) 
model. 
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Figure IV 

Weekly RMSE Difference: RMSE(CEV)RMSE(CEVJ)   

 
Notes: We plot the difference in weekly RMSE for the period January 2, 1990 to December 31, 1995. The 
difference represents the weekly RMSE of the CEVJ model less the weekly RMSE of the CEV model. 

 
Figure V 

 Empirical Cumulative Distribution Function of the CEV and CEVJ Models Implied from S&P500 Returns 
and from ATM Options. 

 
Notes: We plot the empirical CDFs for the CEV model and CEVJ model using the residuals evaluated at the 
optimal parameters. To plot the CDFs in the top panel, we use the estimates in Table 3 obtained from returns 
data for the period 87-04. To plot the CDFs in the middle panel, we use the estimates in Table 4 obtained from 
returns data for the period 90-04. The CDFs in the bottom panel were generated using the estimates in Table 5 
obtained from ATM options. 
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5. Conclusion 

 We investigate the degree of nonlinearity implied by returns and options, and the impact of 
including jump processes on this parameter. We find that both returns and options data favor 
nonlinear specifications and that the coefficient of nonlinearity is between 0.93 and 1.34 when we use 
returns and between 0.80 and 0.82 when we use returns and options. Our findings are significant 
since they show that estimations based on returns and on returns and options are consistent. We also 
find that adding jumps to nonlinear models did not minimize the importance of nonlinearity in the 
models' specifications. Hence, nonlinearity and jumps seem to be complementary rather than 
competitive. 

 

Nonlinear models are therefore good building blocks for models that include jumps. We also 
obtained reasonable correlation that fell within the range of what was previously documented in the 
literature. 
 Although we find in this study that adding jumps to nonlinear models did not improve the model 
fit, this does not imply that we should exclude them from stochastic volatility models. First, jumps are 
infrequent in the sense that our sample might not be rich enough in terms of volatility dynamics to 
reveal their importance in improving the model fit. Second, because of the computational burden, we 
only use ATM call options which define a moneyness interval where almost all stochastic volatility 
models perform the best. Including a full cross-section of options data together with the time series 
dimension might lead to more favorable results for jump processes. 
Finally, while the CEV- and the CEVJ models are certainly better models in-sample compared to the 
typical linear model, the implications of including additional parameters for the out-of-sample 
performance of these models are not obvious and should be studied in future work. 

6. Appendix 

6.1. Appendix 1: The SIR Particle Filter (PF) of the CEV model 

 We illustrate the implementation of the particle filter technique in the context of the CEV model in 
which the Euler discretization is given by 
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Filtering the state variable consists of the following 3 steps. 

6.1.1. Step 1: Simulating the state forward: Sampling 

This is done by computing j

tV   from the original set of particles { j

tV } Nj 1=  assumed to be known at 

time t  using equation (13) and taking the correlation into account.3 We have 
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The above equation gives 

                                                      
3We initialize the variance in the first period to equal the model-implied unconditional variance, that is, =0

j
V , for all j . 

In the MLIS estimation, 0=t  is simply the first day of observed returns that is January 2, 1987 for the first sample, and 

January 2, 1990 for the second sample. In the NLS estimation, 0=t  is January 2, 1989 corresponding to one year prior to the 

first available option quote. 
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 We simulate N  particles which describe the set of possible values of tV . 

6.1.2. Step 2: Computing and normalizing the weights: Importance Sampling 

At this point, we have a vector of N  possible values of tV  and we know, according to equation 

 ,13  that, given the other available information, tV  is sufficient to generate ).(ln 2tS  Therefore, 

equation  13  offers a simple way to evaluate the likelihood that the observation 2tS  was 

generated by .tV  Hence, we compute the weight assigned to each particle (or the likelihood or 

probability that the particle has generated 2tS ). The likelihood is computed as follows: 
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6.1.3. Step 3: Resampling 

 This step is necessary for propagating high probability particles often and vice versa. We use a 
simple technique to resample the particles, which eliminates the particles of low probability and 

replicates those of high probability. Therefore, we construct a set of integer variables { j

t  } Nj 1=  which 

can be done in different ways. Our method uses the resampling scheme proposed by Pitt (2002) that 
allows us to obtain a smooth objective function in the parameters' space. 

First, the adjusted weights obtained in Step 2, j

tW  , are mapped into a set of integer variables 

{ j

t  } N

j 1= , using an algorithm that considers the weights that are not multiples of .1/N  This 

algorithm is based on the empirical CDF of V  and smoothed using linear interpolation as suggested 

by Pitt (2002). The smoothing enables gradient-based optimization and the computation of standard 
errors using conventional first-order techniques. 

Next, we construct the new set of particles { j

tV )( } Nj 1=  by replicating each particle in the original set 

{ j

tV  } Nj 1=  j

t   times. Therefore, the particles in the original set are either eliminated, or included once 

or several times according to their adjusted weights { j

tW  } .1=
N

j  The greater the weight, j

tW  , the 



The Nonlinearity and Jumps in Stochastic Volatility: Evidence from Returns and Options Data         115 

higher the integer variable j

t  , and the more often the original particle j

tV   is included in the 

resampled set { j

tV )( } .1=
N

j  

 We now have a new set of N  particles and weights { j

t

j

t VV  )(,)(  } N

j 1=  which are implicitly 

functions of the variable 
t  and all of which have weights N1/ . We are thus ready to return to Step 

1 to move the filter forward. 

6.2. Appendix 2: Adaptation of the PF to the CEVJ model 

 Note that the jumps in equation  1  create further discontinuities in the objective function besides 

those generated by the particle filter. One possible solution to this problem is to approximate the 
density of returns by the following expression 
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Proof of this approximation result is: 
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 This converges quickly (we can normally ignore terms in excess of three or four terms i.e. x> 4). 

Consequently, we have the form )|( 1rt VRf , which is more heavy-tailed than the Gaussian as it is a 

combination. 

 This form of the density given by equation  14  enables us to do smooth resampling as was 

previously carried out in the filtering algorithm (see step 3 in Appendix 1). Note that if the density is 
not written in the above form, then the optimization using the particle-filtering technique will be 
infeasible. 
The Euler discretization of the model after applying the density approximation is shown to be 
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 We then proceed with the 

filtering exercise exactly as was done with the CEV model. 
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