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In portfolio optimization, conditional value-at-risk (CVaR) is a wildly adopted risk measure. However the 
sensitivity of CVaR constraint to tail thickness has also motivated the development of extending the basic CVaR 
structure to overcome the problem. In this paper, we investigate whether such extension adds value to portfolio 
performance. Specifically, we compare the out-of-sample portfolio returns for three portfolio optimization models: 
the CVaR model, the minimized GARCH–EVT–Gaussian Copula-CVaR model, and the minimized GARCH–
EVT–Student’s t Copula-CVaR model. The influences from different rebalancing frequencies and market 
conditions are also examined. The empirical results suggest that the portfolio returns from the two minimized 
GARCH–EVT–Copula-CVaR models outperform the returns from the CVaR model under daily and weekly 
rebalancing frequencies. As the rebalancing interval is extended, however, the portfolio returns from the two 
minimized GARCH–EVT–Copula-CVaR models decrease, demonstrating the declining benefits of adopting 
GARCH-EVT-Copula-CVaR framework. The robustness checks indicate that the results are statistically 
significant during the post-crisis period. This study provides portfolio managers some empirical observations on 
when sophisticated tail and dependence models may enhance portfolio returns. 
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1. Introduction 

How to allocate funds among various investable alternatives is a key question in portfolio 
management. To search for the optimal risk-return trade-off, Markowitz (1952) proposed a Mean-
Variance (MV) framework. In the MV framework, the risk is evaluated by both the variance of an 
individual asset and the correlations between assets within the portfolio. The expected return, on the 
other side, is captured by the average of asset returns. As the MV model provides an intuitive 
approach to solving the asset allocation problem, it has become the foundation of modern portfolio 
theory. 

Approaches to portfolio optimization have evolved over the past several decades. While the 
expected return remains a common measure of the portfolio return, some alternative risk measures 
have been developed in light of the structural issue associated with variance. Variance, by definition, 
treats upside and downside variations equivalently. Empirically, investors exhibit greater concern for 
downside risks than for upside windfalls. Therefore, variance cannot effectively calibrate the investors’ 
perceptions of risk, thereby leading to potential misinterpretation. To focus on investors’ asymmetric 
attention, many alternative risk measures such as lower semi-variance, lower semi-absolute deviation, 
Value-at Risk (VaR), and Conditional Value-at-Risk (CVaR) have been developed. As discussed by 
Ortobelli et al. (2005), there are two classes of risk measures: safety-risk measures and dispersion 
measures. Among those risk measures, the most popular measure is CVaR, introduced by Rockafellar 
and Uryasev (2000). In simplified terms, CVaR is the weighted average of the worst-case scenarios 
within a specified confidence interval during a given time period. It is applicable to non-normal, 
asymmetric data and emphasizes downside risk. The advantage of using CVaR for risk diagnosis is 
that it is a continuous, convex, and coherent measure. CVaR also takes both the size and the probability 
of the loss into consideration, which represents an advantage over VaR (Chen, Fabozzi, and Huang, 
2012). Owing to its attractive mathematical properties, CVaR or CVaR-based modeling has been one 
of the most popular risk measures used for portfolio optimization (Kolm, Tütüncü, and Fabozzi, 2014). 
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However, as CVaR is the conditional expectation of the loss above VaR, the accuracy of the CVaR 
measure is highly dependent on the tail modeling and data probability distribution. This considerable 
need for an improved tail calibration and dependence measure led to follow-up studies such as Wang, 
Chen, Jin, and Zhou (2010) and Deng, Ma, and Yang (2011), which incorporate sophisticated tail 
modeling when applying the CVaR risk measure.  

In this paper, we adopt a different perspective to examine the imposition of a CVaR constraint in 
portfolio optimization. According to DeMiguel, Garlappi, and Uppal (2009), sophisticated models do 
not consistently deliver better performance than the naïve model in portfolio optimization; therefore, 
we wish to evaluate whether extending the CVaR risk measure with a sophisticated tail treatment and 
advanced dependence modeling creates a model that outperforms the plain CVaR risk measure. In 
other words, are additional mathematical treatments worth the effort? Should portfolio managers 
consider using extended CVaR models to achieve better portfolio performance? If not, what are the 
reasons for the inefficiency of the sophisticated computations? Do states of economy and portfolio 
rebalancing frequencies affect the potential benefit of adapting advanced mathematical treatments in 
such modeling? To analyze this question, we adopt a combination of a GARCH innovation process, 
extreme value theory (EVT), and copula dependence to develop two CVaR-based risk measures for 
portfolios: the GARCH–EVT–Gaussian Copula-CVaR model and the GARCH–EVT–Student’s t 
Copula-CVaR model. The GARCH-EVT is included to calibrate the tail behaviors, and the copula is 
adopted to estimate the dependence between assets. Because equity dependence varies over time 
(Login and Solnik (2001); Ang and Chen (2002)), we adopt a rolling window technique to derive a 
series of dependence coefficients to reflect this empirical phenomenon. Finally, copula simulation is 
performed to estimate portfolio loss distributions and to calculate optimal asset allocation weights by 
minimizing portfolio CVaRs. To evaluate the potential contribution of advanced mathematical 
treatments, the out-of-sample performance of the CVaR model, the GARCH–EVT–Gaussian Copula-
CVaR model, and the GARCH–EVT–Student’s t Copula-CVaR model is compared. We also assess the 
significance of portfolio return differences using Ledoit and Wolf’s (2008) non-linear studentized time 
series bootstrap method.  

This paper contributes to the existing studies in the following ways. First, it offers a 
comprehensive examination of the use of the CVaR constraint in portfolio optimization. Despite the 
well-acknowledged benefits of using GARCH-EVT, copula, or CVaR models in empirical finance, few 
studies have managed to combine the three structures, i.e., GARCH-EVT to calibrate tail behaviors, 
copulas to gauge the dependence structure, and CVaR to estimate the downside risk, into a composite 
framework due to the complex programming involved. Moreover, many of the existing studies are 
based on a static framework, leaving the time–varying equity dependence out of the consideration. In 
this study, we not only illustrate how to integrate the three structures but also refine previous analysis 
by adding a rolling window method to capture the time-varying property of equity dependence. 
Second, this study offers portfolio managers a reference for whether quantitative models may provide 
better portfolio performance. We compare the performance of three portfolio optimization models 
under four different rebalancing intervals for both recession and expansion periods. Our empirical 
results indicate that for active or shorter rebalancing, it is necessary to apply treatments to fat-tailed 
data to achieve higher returns. For longer rebalancing intervals, this study does not observe consistent 
statistical significance in the difference between using and not using tail treatments and advanced 
dependence measures. The remainder of this paper is organized as follows. Section 2 reviews existing 
studies on portfolio optimization using the CVaR constraint. Section 3 illustrates the construction of 
the empirical models, and Section 4 describes the data. The main empirical results are reported and 
discussed in Section 5, and Section 6 concludes. 

2. Literature Review 

The M-V model developed by Markowitz (1952) offers a starting point for identifying an optimal 
asset allocation based on the trade-off between risk and return. Kolm, Tütüncü, and Fabozzi (2014) 
argued that this model represented a substantial breakthrough at the time because it posited a 
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quantitative approach to resolving complex financial decision making. However, this intuitive 
approach comes at the expense of being highly sensitive to the changes in inputs, while in practice the 
ex-ante parameters are unknown (Levy and Levy, 2014). In recognizing such potential estimation 
errors, many extensions of the M-V model have been developed in an attempt to mitigate the problem, 
and defining the proper instrument for measuring risk and identifying the proper dependence 
measures has been prioritized in this regard. 

In recent years, portfolio optimization using lower tail risk has become popular as investors 
express greater concern regarding downside risk. According to Artzner et al. (1999), a proper risk 
measure should be coherent, i.e. satisfy four properties:  translation invariance, subadditivity, 
positive homogeneity, and monotonicity. Although VaR is a wildly used risk measure in various 
industries, it is not a coherent measure and is subject to several mathematical disadvantages. CVaR, 
by contrast, is a modification of VaR that eliminates the latter’s undesirable properties. CVaR is 
defined as the weighted average of the worst-case scenarios within a specified confidence interval 
during a given time period. Since Pflug (2000) proved that CVaR is a coherent measure, CVaR has 
become a popular tool in estimating risk, and studies have begun to use CVaR in portfolio 
optimization. 

Rockafellar and Uryasev (2000) introduced linear programming and nonsmooth optimization 
techniques in portfolio optimization with CVaR constraints. They illustrated that the proposed 
techniques can efficiently reduce CVaR and are suitable for application in risk management. 
Alexander and Baptista (2004) compared VaR and CVaR constraints in portfolio optimization, 
concluding that a CVaR constraint is tighter and more efficient than a VaR constraint in most situations 
and that the CVaR constraint tends to be a better risk management tool than a VaR constraint. 
Alexander, Coleman, and Li (2006) studied CVaR minimization problems when constructing a 
derivatives portfolio. They found that by introducing cost as an additional parameter in the CVaR 
optimization, an optimal CVaR portfolio will have fewer instruments, leading to lower transaction 
costs. Chen, Fabozzi, and Huang (2012) illustrated how transaction costs affect the portfolio revision 
when mean-CVaR is used as the risk measure. They demonstrated how to integrate CVaR to deal with 
the computational difficulty involved in identifying a robust portfolio. Tong, Qi, Wu, and Zhou (2010) 
utilized a smoothing technique when solving portfolio optimization using a CVaR constraint, 
concluding that the smoothing method is appropriate for any portfolio optimization involving semi-
smooth cases. 

Copula functions are known for their applicability to a non-elliptical data distribution. As such, 
incorporating copula functions into the CVaR optimization process is also increasingly common in the 
literature. Yu, Yang, and Li (2009) introduced a variance Gamma (VG) copula approach and applied 
it in a minimized CVaR portfolio model. Using three Chinese stock indices in a portfolio, their study 
demonstrated that the conventional Gaussian copula is not able to capture the skewness and kurtosis 
of assets returns and showed that the VG process may be a better alternative. Wang, Chen, Jin, and 
Zhou (2010) applied the GARCH-EVT-Copula models in estimating the VaR and CVaR of foreign 
exchange portfolios, finding that the Student’s t and Clayton copulas are more accurate in measuring 
dependence than the Gaussian copula is. Deng, Ma, and Yang (2011) adopted the pair Copula-
GARCH-EVT-CVaR models in optimizing portfolios of four Chinese stock indices, concluding that 
employing the pair copula in lieu of the Student’s t copula leads to better portfolio performance. 
Kakouris and Rustem (2014) demonstrated how to combine rival copulas and CVaR to provide 
solutions for robust portfolio optimization. They constructed a Worse Case CVaR (WCVaR) using rival 
copulas and showed that the WCVaR framework is especially useful during periods of crisis. 

Despite the popularity of employing CVaR in portfolio optimization, existing studies have 
tended to assume a static rather than a dynamic framework to avoid computational difficulties, 
thereby generating the potential for estimation error. Moreover, when evaluating portfolio 
performance, the effects of the choice of sample period and portfolio rebalancing frequencies have 
seldom been investigated. These hitherto unaddressed questions motivate the design of the dynamic 
GARCH-EVT-Copula-CVaR models in the next section.  
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3. Methodology 

This section illustrates the steps for solving the portfolio optimization problem under the CVaR 
constraint within the multivariate GARCH-EVT-Copula framework.  

3.1 The GARCH-EVT application 

EVT is known for its ability to capture extreme tail behaviors. Studies on EVT and its application 
in finance include Embrechts et al. (1997), Beirlant et al. (2004), McNeil (1998), McNeil and Frey (2000), 
and Dowd (2005), among others. Within the EVT framework, an important assumption is that the data 
are required to be independent and identically distributed (iid) random variables, which is not 
commonly seen in return data. To fulfill this requirement, McNeil (1998) recommends using the 
GARCH (1, 1) model as an intermediate step to transform the original data into iid data before 
incorporating EVT. The GARCH model is specified as follows: ��,� = �� + ��,�
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, where ω > 0, 1 ≥ η ≥ 0, 1 ≥ O ≥ 0, and η +O <1 are necessary conditions, and ri,t is the actual return from 
the sample. Conditioning on the information on date t-1, µi represents the conditional expected return, 
and σi,t denotes the conditional volatility of return i on date t. zi,t is an iid sequence that follows the 
Gaussian distribution. 
    According to Wand and Jones (1995), the standard uncorrelated residuals Zi=zi,1, zi,2, zi,3,…zi,n can 
be converted into the marginal cumulative distribution with the Gaussian kernel estimate expressed 
as follows: 
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, where K(.) is the Gaussian kernel, as ���� = �
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, and h is a smoothing parameter that is a 

positive number close to zero.  
To fit fat-tailed return distributions, a semi-parametric approach, i.e., a non-parametric empirical 

distribution calibrating the center of the return distribution and EVT describing the tails of return 
distributions with the parametric generalized Pareto distribution (GPD), is adopted. Thus, the 
marginal distribution of Zi is defined as follows: 
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, where superscripts l and r denote the left and right tails, respectively. β denotes the scale parameter, 
and ξ denotes the shape parameter. When ξ<0, it indicates that the distribution has a finite tail, and 
when ξ = 0, it indicates that the distribution has a thin tail. For ξ>0, it indicates that the distribution 
has a fat tail. n is the number of observations, and k represents the amount of observations beyond 
threshold v.  

Identifying an appropriate threshold v is key in this approach. If the threshold is set at a low value, 
the GPD will include excess observations, and certain observations may not belong to the extremes, 
which will lead to estimation bias. However, if the threshold is set too high, there may be too few 
observations to model the GPD, which will lead to high variance. As determining the value of the 
threshold involves a trade-off between bias and variance, previous studies have recommended 
different threshold levels or proposed various methods for determining the optimal level (e.g., Neftci 
(2000), McNeil and Frey (2000) and Longin and Solnik (2001)). This paper adopts the value suggested 
by Neftci (2000), in which the extremes are set at the upper and lower 5% of observations. 
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3.2 Copulas 

A copula is a function that ties univariate marginal distribution functions together to form a 
multivariate distribution function. Thus, such a joint distribution function can be separated into 
marginal distributions that express the characteristics of each asset and a copula function that 
describes the interaction between assets. Because the copula function is measured independently from 
the marginal distributions, copula functions are not subject to the restrictions arising from the data 
distribution (Cherubini et al. (2004)).  

According to Sklar's theorem, if the marginal distributions F1, F2, F3, …, Fn are continuous, a 
unique copula will exist for a joint distribution of the marginal distribution. That is, F�z�, z�, … , zF� = CHF��z��, F��z��, … , FF�zF�I                     (7) 

, where Z= (z1, z2, ..., zn)T is a vector of n random variables with marginal distributions F1, F2,…, Fn. In 
this paper, two copula functions are adopted: the Gaussian copula, which describes the overall 
distribution and assumes no tail dependence, and Student’s t copula, which emphasizes both the 
center of the distribution and the symmetric tail behaviors.  

3.2.1 Gaussian Copula 

The Gaussian copula is popular because it is straightforward in both concept and computation. 
According to Malevergne and Sornette (2003), the Gaussian copula is applicable to stock index return 
data. The multivariate Gaussian copula can be written as follows: 
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, where Φ denotes a univariate standard normal distribution function, ΦΩ is the joint distribution of 
the multivariate standard normal distribution functions, and Ω is the correlation coefficient matrix, in 
which the value of each correlation coefficient is between -1 and 1. Because the Gaussian copula does 
not focus on the tails of the distribution, tail dependence only exists when the correlation coefficient 
is 1. 

If we define ρ = �Φ��Hz�,LI, Φ��Hz�,LI, … , Φ��HzF,LI� , Ω can be estimated via the maximum 

likelihood estimation (MLE) method as Ω3 = �
_ ∑ `�`�a_��� . 

3.2.2 Student’s t Copula 

Student’s t copula is built on the t distribution. The multivariate Student’s t copula calibrates 
dependence for both the center and the tails of the distribution and is defined as follows: 
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, where pq,r denotes the multivariate joint t distribution, p4��stands for the inverse of the distribution 

of a univariate t distribution, Ω is the correlation coefficient matrix, and v indicates the degrees of 
freedom. The correlation coefficient ρ exists when the degrees of freedom are greater than 2. 

Defining  ρ = Ktb��Hz�,LI, tb��Hz�,LI, … , tb��HzF,LIM , Ω can be derived using the maximum likelihood 

estimation (MLE) method, and no flexibility will be lost when fixing the degrees of freedom. This 
approach can be written as follows: 
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3.3 The Conditional Value-at-Risk (CVaR) model  

Mathematically, CVaR can be defined as follows:  Jyz{�� |�5 = −}~�| ∈ {��| ≤ −yz{5��,                    (13) 

and  

 yz{�� |�5� = ���~�| ∈ {��H� ≤ yz{�I = ��                 (14) 

, where L is a sequence number, rp,t, rp,t-1, rp,t-2, rp,t-3, …rp,t-h, representing the portfolio returns at times t, 
t-1, t-2, t-3,..., t-h, respectively. α is a small percentage close to 0 (typically 1% or 5%); β is a given level 
of confidence; and h is the target horizon denoting the differential period between t and (t+h).  

For an n-asset portfolio with W=(w1, w2,…, wn)T as the weight of each asset and Rt=(r1,t, r2,t,…, rn,t)T 
as the return of each asset on date t, the expected portfolio return rp,t is defined as ∑ ����,����� , and the 

loss function of the portfolio is f(w,r)=-WTR, with the density p(r). Based on the methodology suggested 
by Rockafellar and Uryasev (2000), the minimized CVaR can be written as follows: Jyz{5��� = min�∈ℝ '5��, ��, 

and                                                                       (15)                                               

'5��, �� = � + �
��5 e ����, �� − ��������=∈ℝ� .              (16)                             

Thus, as explained in the following section, the optimal weights, W, will be calculated using three 
models: the Rockafellar and Uryasev (2000) CVaR model, the multivariate GARCH–EVT–Student’s t 
Copula-CVaR model, and the multivariate GARCH–EVT–Gaussian Copula-CVaR model. 

3.4 Portfolio return estimation 

To evaluate the portfolio performance, this paper assumes no transaction costs and no short-
selling constraints1. Such assumptions allow us to focus on the impact of the different models on the 
portfolio returns. In addition, to reflect the time-varying dependence structures, a 500-day rolling 
window technique is used to provide a sequence of parameters for the out-of-sample portfolio 
estimation. There are two steps involved in this approach. First, the data from date t1 to date t500 are 
taken to calculate the optimal weightings by solving a quadratic function subject to constraints. Second, 
the derived optimal weightings are applied to the return data on date t501 to compute the out-of-sample 
portfolio returns for date t501.  
    For the CVaR model, Rockafellar and Uryasev (2000) suggested using a linear programming (LP) 
approach to estimate a corresponding approximation as follows: F���w, α� = α + �

������ ∑ �f�w, r�� − α������ .                       (17) 

 
The optimal weights can then be solved by minimizing the Monte Carlo simulation returns through 
line search techniques or standard linear programming. This study sets α=0.05 and β=0.95 and uses 
the data for the prior 500 days to calculate the expected mean and expected variance of each MSCI 
index for the Monte Carlo simulation. The optimal weights for the out-of-sample return on t501 are 
solved based on a line search using a Monte Carlo simulation with 10,000 simulated observations 
(q=10,000).  

In the two GARCH–EVT–Copula-CVaR models, three steps are involved. First, the data for the 
prior 500 days are used to independently estimate the correlation coefficient matrices of the 

multivariate Gaussian copula or Student’s t copula functions. Second, ��  is decomposed, and 10,000 
residuals are simulated. The residuals are then restored through the GARCH (1, 1) model to generate 
the return series of each MSCI index. Finally, the confidence level is set to 95% to calculate portfolio 
CVaRs with various weights and to determine the optimal weights for the out-of-sample return on t501 
through the minimum CVaR.  

                                                      
1 Short-selling typically entails additional costs for investors, and studying the effect of investment constraints is a different 
line of research. To focus on the influence of portfolio modeling on portfolio performance, this paper adopts a no short-selling 
constraint to simplify the comparison. 
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3.5 Portfolio Rebalancing  

To maintain an efficient asset allocation across horizons, periodic portfolio rebalancing is 
important because it helps the portfolio re-adjust to its original goal and, therefore, reduce investors’ 
exposure to unnecessary risks. The crucial question for portfolio managers is how often a portfolio 
should be rebalanced and whether the choice of the optimization model affects the optimal portfolio 
rebalancing frequency. According to Eaker and Grant (2002), the choice of portfolio rebalancing 
strategy has a substantial impact on portfolio performance. They documented that the benefits of 
portfolio rebalancing decrease as the rebalancing frequency increases. Mendes and Marques (2012) 
examined twelve rebalancing strategies, varying in the rebalancing frequencies and in target risk 
tolerance, and concluded that semi-annual rebalancing provides the best long return performance. In 
this study, we follow the assumption in Mendes and Marques (2012) of not considering rebalancing 
costs and empirically examine the dynamics of four portfolio rebalancing strategies--daily, weekly, bi-
weekly, and monthly--and their impacts on the selection of portfolio optimization models.  

4. Data 

The data adopted in this study are the U.S. dollar-denominated daily MSCI indices for the G8 countries 
(Canada, France, Germany, Italy, Japan, Russia, the U.K., and the U.S.). The sample period ranges 
from the first trading day in December 2005 to the last trading day in January 2012 and consists of a 
total of 1,587 observations. With a 500-day rolling window, the out-of-sample period covers 1,087 
returns, ranging from the first trading day in December 2007 to the last trading day in January 2012. 
To examine the model’s performance across recession and expansion periods, the sample period is 
categorized into two sub-periods. Following the announcements made by the National Bureau of 
Economic Research (NBER), this paper defines the first period as the financial crisis period, ranging 
from December 3, 2007 to June 30, 2009, and the second period as the post-crisis period, ranging from 
July 1, 2009, to January 31, 2012. 
    The daily returns, ri,t, of the MSCI index for each G8 country are calculated as follows: {�,� = ��� ��,���,�#$,�                                (18) 

, where I =1 to 8, representing each country in the G8. 
The descriptive statistics for the G8 MSCI indices are reported in Table 1. The average returns for 

the G8 countries are all negative. Thus, although the markets rebounded in the post-crisis period, the 
overall portfolio gains for the entire period are not sufficiently high to cover the losses incurred during 
the financial crisis period. The results regarding skewness and kurtosis indicate that the returns for 
the G8 countries have non-normal distributions. Japan, Russia, the U.K., and the U.S. have long 
distribution tails on the left-hand side, and Canada, France, Germany, and Italy have long distribution 
tails on the right-hand side. The results of the Jarque-Bera test also confirm that the returns for the G8 
countries are not normally distributed at the 1% significance level. Therefore, a GARCH-EVT model 
may better fit the data.   

                      
Table 1: Summary Statistics for the G8 MSCI Indices 

 

 Canada France Germany Italy Japan Russia U.K. U.S. 

Mean (%) -0.0098 -0.0543 -0.0452 -0.0894 -0.0343 -0.0504 -0.0361 -0.0097 

Std. Dev. 0.0201 0.0225 0.0219 0.0239 0.0171 0.0319 0.0201 0.0175 

Skewness 0.6674 0.0938 0.0517 0.0366 -0.1261 -0.3754 -0.0196 -0.2487 

Kurtosis 8.970 6.982 6.559 6.249 8.131 14.890 8.583 9.279 

Jarque-Bera 1693*** 719.2*** 573.7*** 478*** 1194*** 6423*** 1410*** 1794*** 

Note: This table reports summary statistics for the daily return series from the G8 MSCI indices. There are a 
total of 1,087 returns for each country. The significance of the Jarque-Bera (JB) test results is marked with 
asterisks, where ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively. These results 
indicate that the daily returns of the G8 MSCI indices are not normally distributed. 

 



26                              Banking and Finance Review                           1 • 2015 

5. Empirical Results 

5.1 Average Portfolio Returns 

Tables 2 to 5 present the average out-of-sample returns and their corresponding standard 
deviations and Sharpe ratios for the entire sample period, the financial crisis period, and the post-
crisis period at different rebalancing frequencies.  

 
Table 2: Average Portfolio Returns and Sharpe Ratios under a Daily Rebalancing Strategy 

 

 CVaR GARCH–EVT–
Gaussian Copula- 

CVaR 

GARCH–EVT–Student’s 
t Copula- CVaR 

Panel A: Average returns    

Entire sample period  -26.9185% 7.6631% 13.1479% 

 (0.5422) (0.3229) (0.3495) 

The financial crisis period -64.3859% -22.4191% -15.6989% 

 (0.5834) (0.1769) (0.1899) 

The post-crisis period -4.0155% 26.0516% 30.7813% 

 (0.3574) (0.2444) (0.3048) 

Panel B: Sharpe ratios    

Entire sample period -0.4963 0.2372 0.3761 

The financial crisis period -1.1035 -1.2668 -0.8262 

The post-crisis period -0.1121 1.0658 1.0098 

Notes: The average daily out-of-sample returns and the corresponding standard deviations (in parentheses) are 
reported in Panel A. Panel B reports the corresponding Sharpe ratios. All numbers are presented in annualized 
formats. 

 
Table 3: Average Portfolio Returns and Sharpe Ratios under a Weekly Rebalancing Strategy  

 

 CVaR GARCH–EVT–
Gaussian Copula 

CVaR 

GARCH–EVT–Student’s t 
Copula CVaR 

Panel A: Average returns    

Entire sample period  -17.2205% -6.8317% -5.4367% 

 (0.4222) (0.2930) (0.2874) 

The financial crisis period -50.0327% -33.7907% -31.0144% 

 (0.4253) (0.2543) (0.2455) 

The post-crisis period 2.8369% 9.6477% 10.1983% 

 (0.2658) (0.1651) (0.1784) 

Panel B: Sharpe ratios    

Entire sample period  -0.4078 -0.2331 -0.1889 

The financial crisis period -1.1763 -1.3287 -1.2631 

The post-crisis period    0.1064 0.5838 0.5711 

Notes: The average weekly out-of-sample returns and the corresponding standard deviations (in parentheses) are 
reported in Panel A. Panel B reports the corresponding Sharpe ratios. All numbers are presented in annualized 
formats. 

 
Under a daily rebalancing strategy, the portfolios using the GARCH-EVT-Gaussian Copula- 

CVaR and GARCH-EVT-Student’s t Copula-CVaR models outperform those using the CVaR model 
with respect to returns. During the financial crisis period, all three models yield negative average 
returns, with the GARCH-EVT-Student’s t Copula-CVaR model yielding the highest average returns 
of -15.6989%. During the post-crisis period, the average returns from all of the portfolio models 
improve, with the GARCH-EVT-Student’s t Copula-CVaR model still yielding the highest average 
returns of 30.7813%. In either period, the CVaR model provides the lowest portfolio returns. There are 
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two implications from this result. First, under daily rebalancing, investors can achieve better portfolio 
performance by adopting the two GARCH–EVT–Copula models regardless of the market conditions. 
Second, coincidental with the findings in Kole, Koedijk, and Verbeek (2007) that Student’s t copula, 
which considers the dependence both in the center and the tail of the distribution, provides the best 
fit for the extreme negative returns of the empirical probabilities. 

 
Table 4: Average Portfolio Returns and Sharpe Ratios under a Bi-Weekly Rebalancing Strategy  

 

 CVaR GARCH–EVT–
Gaussian Copula- 

CVaR 

GARCH–EVT–
Student’s t Copula 

CVaR 

Panel A: Average returns    

Entire sample period  -11.6614% -12.5087% -9.6027% 

 (0.4162) (0.2671) (0.2512) 

The financial crisis period -46.0786% -35.0794% -31.0900% 

 (0.3857) (0.2516) (0.2372) 

The post-crisis period 9.3771% 1.2881% 3.5319% 

 (0.2675) (0.1616) (0.1478) 

Panel B: Sharpe ratios    

Entire sample period  -0.2801 -0.4679 -0.3821 

The financial crisis period -1.1944 -1.3938 -1.3107 

The post-crisis period     0.3502 0.0792 0.2388 

Notes: The average bi-weekly out-of-sample returns and the corresponding standard deviations (in parentheses) 
are reported in Panel A. Panel B reports the corresponding Sharpe ratios. All numbers are presented in annualized 
formats. 

 
Table 5: Average Portfolio Returns and Sharpe Ratios under a Monthly Rebalancing Strategy 

 

 CVaR GARCH–EVT–
Gaussian Copula- 

CVaR 

GARCH–EVT–Student’s t 
Copula- CVaR 

Panel A: Average returns    

Entire sample period  -7.5846% -13.2631% -13.0835% 

 (0.3837) (0.2287) (0.2573) 

The financial crisis period -40.0274% -30.2851% -32.9888% 

 (0.3336) (0.2248) (0.2586) 

The post-crisis period 12.3977% -2.8579% -0.9159% 

 (0.2529) (0.1577) (0.1637) 

Panel B: Sharpe ratios    

Entire sample period  -0.1975 -0.5797 -0.5083 

The financial crisis period -1.2071 -1.3469 -1.2753 

The post-crisis period    0.4899 -0.1807 -0.0555 

Notes: The average monthly out-of-sample returns and the corresponding standard deviations (in parentheses) 
are reported in Panel A. Panel B reports the corresponding Sharpe ratios. All numbers are presented in annualized 
formats. 

 
When the rebalancing frequency is extended from daily to weekly, the two minimized GARCH–

EVT-Copula-CVaR portfolios continue to outperform the portfolios using the CVaR model across the 
different states of the economy. However, the differences in the average portfolio returns between the 
two minimized GARCH–EVT-Copula-CVaR models and the CVaR model decrease as the rebalancing 
frequency decreases. GARCH-EVT-Student’s t Copula-CVaR model, again, delivers the highest 
portfolio returns. 

As the rebalancing frequency is extended to bi-weekly and monthly bases, the advantages of 
adopting the GARCH-EVT-Copula-CVaR models in the entire sample period diminish as the two 
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GARCH-EVT-Copula-CVaR models do not consistently yield the higher returns. Under bi-weekly and 
monthly rebalancing, the CVaR has the best portfolio performance during the post-crisis period. 
Therefore, the implications of the empirical evidence are that sophisticated models such as the two 
minimized GARCH–EVT–Copula-CVaR models will offer higher portfolio returns if the portfolio 
weightings are to be adjusted on a daily or weekly basis. If frequent weighting adjustments are not 
available, then the CVaR model should be adopted for modeling the portfolios. 

 
Table 6: Test of the Differences in the Portfolios’ Sharpe Ratios 

 

 GAU-CVaR T-CVaR T-GAU 

Panel A: Daily    

Entire sample period 0.0002*** 0.0002*** 0.0184*** 

Financial crisis period 0.2569 0.2292 0.065* 

Post-crisis period 0.0006**** 0.0008*** 0.2909 

Panel B: Weekly    

Entire sample period 0.0062*** 0.007*** 0.2909 

Financial crisis period 0.0656* 0.4675 0.2356 

Post-crisis period 0.0046*** 0.0102*** 0.831 

Panel C: Biweekly    

Entire sample period   0.0454***  0.0370*** 0.0354*** 

Financial crisis period 0.1038 0.0414*** 0.3199 

Post-crisis period  0.0098*** 0.4561 0.0686* 

Panel D: Monthly    

Entire sample period  0.0026***  0.0008*** 0.0314*** 

Financial crisis period 0.2713 0.4027 0.7383 

Post-crisis period 0.0002*** 0.0002*** 0.0190*** 

Note: Following the framework proposed by Ledoit and Wolf (2008), this paper tests whether the portfolios’ 
Sharpe ratios are statistically different. In the table below, T denotes the GARCH–EVT–Student’s t Copula-CVaR 
model, GAU denotes the GARCH–EVT–Gaussian Copula-CVaR model, and CVaR denotes the original 
minimized CVaR model. ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively. 

 
The empirical findings in this study coincides with those of Stoyanov, Rachev, and Fabozzi (2013). 

Stoyanov, Rachev, and Fabozzi (2013) studied the sensitivity of the CVaR with respect to tail thickness 
and the scale of the portfolio return distribution. They concluded that small variations in the tail index 
do not result in large variations in CVaRs. However, when data are very heavy-tailed, one should 
backtest CVaR models to ensure the soundness of the model. Empirically, portfolio managers closely 
monitor daily returns. Daily returns are also prone to skewness and kurtosis problems. A high 
rebalancing frequency (such as daily or weekly rebalancing) exacerbates this issue. Therefore, a 
sophisticated mathematical treatment that is capable of working with nonnormal data will yield a 
rather efficient portfolio, thereby resulting in higher portfolio returns. In other words, the cost of 
constructing a highly quantitative-oriented model is worthwhile. However, when the rebalancing 
frequency is extended, the marginal benefits of using complex modeling will diminish as the extent of 
asymmetry and non-normality is attenuated, making investing in rigorous computations less 
appealing. 

5.2 Evaluating Portfolio Sharpe Ratios 

The results reported in the previous section reflect the comparisons using the average terms. One 
problem with averaging is that the reported results are easily biased by outliers. Therefore, a 
robustness check should be performed to further confirm the empirical findings. 

The Sharpe ratio is often considered a tool to compare portfolio performance. Therefore, testing 
two investment strategies’ Sharpe ratios can help researchers identify whether one strategy is better 
than the alternative. However, given the existence of fat tails in the return data, the usual tests for the 
differences between the portfolios’ Sharpe ratios are inadequate. To conduct a robustness test for 
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portfolio performance, this study adopts the model developed by Ledoit and Wolf (2008) by 
implementing a studentized time series bootstrap method to make the comparison.  

Table 6 reports the results of the Ledoit and Wolf (2008) test for the three portfolio return pairs: 
GARCH-EVT-Gaussian Copula-CVaR (GAU) versus CVaR, GARCH-EVT-Student’s t Copula-CVaR 
(T) versus CVaR, and, GARCH-EVT-Student’s t Copula-CVaR (T) versus GARCH-EVT-Gaussian 
Copula-CVaR (GAU). The test results reveal that the differences in average returns across the different 
models during the financial crisis, although sizable, are not statistically different at various 
rebalancing frequencies. For the post-crisis period, the CVaR model and the two GARCH-EVT-
Copula-CVaR models significantly differ at the 99% level in most cases. The test also indicates that the 
differences between the two GARCH-EVT-Copula CVaR models are not statistically different across 
the various scenarios. 

The results from this section are as follows. First, the returns from the two minimized GARCH-
EVT-Copula-CVaR models are statistically different from those obtained from the CVaR model for the 
full sample and post-crisis periods, thus providing justification for applying the GARCH-EVT-
Copula-CVaR structure in the post-crisis period at daily and weekly rebalancing frequencies. Second, 
although the two minimized GARCH-EVT-Copula CVaR models demonstrate substantially better 
performance than the CVaR model during the financial crisis period across the four rebalancing 
frequencies, the differences are not statistically significant.  

6. Conclusions 

In this paper, we evaluate the potential benefits of adopting dynamic GARCH-EVT-Copula-
CVaR models in portfolio optimization. We attempt to provide portfolio managers with guidance on 
when sophisticated tail and dependence models may be valuable for investors. In particular, we 
examine the fitness of this framework under various rebalancing frequencies and market conditions. 

Our results indicate that the portfolios using the two minimized GARCH–EVT–Copula-CVaR 
models outperform those using the CVaR model at daily and weekly rebalancing frequencies. 
Therefore, if the company’s policy is to review and rebalance portfolios over a shorter period (such as 
daily or weekly), portfolio managers may have an incentive to adopt GARCH-EVT-Copula-CVaR to 
gain a better portfolio return. The robustness tests further confirm that the empirical findings are 
statistically significant for periods of expansion. However, GARCH-EVT-Copula-CVaR modeling is 
not beneficial for portfolios designed to rebalance over longer horizons. Since tail thickness is the key 
in deciding whether GARCH-EVT-Copula matters to CVaR optimization process, future research may 
extend to the areas of developing the tail index to quantify the possible influence from the degree of 
tail thickness to portfolio optimization.  
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