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1. Introduction 

Several arguments can be made that the business cycle plays a major role for the amount of risk 
lurking in the banking industry. One argument states that a business-cycle downturn is likely to 
deteriorate households’ and firms’ balance sheets, which, in turn, should increase the risk of default 
of outstanding loans. Another argument implies that this risk is aggravated because problems due to 
an asymmetric distribution of information among banks and their borrowers give rise to procyclical 
agency costs. Procyclical agency costs may reflect that problems due to adverse selection among 
borrowers are likely to get worse during business-cycle downturns. Yet another argument stipulates 
that problems due to an asymmetric distribution of information may imply that moral hazard and 
excessive risk-taking behavior on the side of banks’ borrowers become more of a problem in bad 
times than in good times. Finally, excessive risk-taking on the side of banks may also be a problem. A 
common argument is that deposit insurance schemes may imply that banks choose a risky asset 
portfolio and gamble on resurrection, implying that risks in the banking industry exacerbate during 
business-cycle downturns. Profound theoretical analyses of these arguments can be found in 
Diamond (1983), Bernanke and Gertler (1989), Rajan (1994), and Kiyotaki and Moore (1997), to name 
just a few.  

The results reported in the theoretical literature have led researchers to ask whether and, if so, 
how risk in the banking industry varies over the business cycle. In a rapidly growing empirical 
literature, researchers have addressed these questions by analyzing the sensitivity of stock returns of 
banks to potentially important risk factors like, for example, interest rates and other macroeconomic 
variables (Dewenter and Hess 1989, Song 1994, Elyasiani and Mansur 1998, Baele et al. 2004). Our 
contribution to this strand of the empirical literature is that we show that, when analyzing the link 
between stock returns of banks and the business cycle, it may be important to account for the fact that 
macroeconomic data available to researchers typically differ from the macroeconomic data available 
to stock market investors, bank supervisors, and monetary authorities in real time. Researchers have 
access to accurate macroeconomic data that have been revised many times. In contrast, when 
reaching decisions in real time, stock market investors, bank supervisors, and monetary authorities 
have access only to preliminary first-releases of macroeconomic data. In real time, the issue arises that 
investors and authorities can base their inferences regarding business-cycle-sensitive risk in the 
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banking industry only on the then latest release of publicly available macroeconomic data. Given the 
enormous importance of this issue, it is surprising that only few studies report evidence of the 
implications of using real-time macroeconomic data for research in empirical finance (see, for 
example, Christoffersen et al. 2002, Evans and Speight 2006, Pierdzioch et al. 2008).  

Our empirical analysis can be summarized as follows. In a first step, we used the stochastic 
discount factor (SDF) model to analyze the link between risk in the banking industry and the business 
cycle. The SDF model provides a general framework for pricing of assets in arbitrage-free markets 
(Smith and Wickens 2002). The model implies that the risk premium that stock market investors 
demand for bearing business-cycle-sensitive risk should be proportional to the covariance of returns 
on stocks of banks with the business cycle. In a second step, we used the SDF model to derive a 
multivariate exponential GARCH-in-mean (MEGARCH-M) model. In recent years, the multivariate 
GARCH-M model has been popular among researchers to study the macroeconomic determinants of 
the risk premium in stock markets (Scruggs 1998, Smith et al. 2009). In the earlier literature, univariate 
GARCH models have been used by Song (1994) and Elyasiani and Mansur (1998) to study the 
dynamics of stock returns of banks. Our MEGARCH-M model provides a unified framework to 
model the joint distribution of the stock returns of banks and macroeconomic variables over the 
business cycle. In a third step, we used data on industrial production and data on the term spread to 
measure the business cycle. We estimated our MEGARCH-M model using monthly U.S. data for the 
period from 1980 to 2006. (We deliberately decided not to analyze very recent data because the recent 
collapse of the U.S. banking industry is likely to have resulted in a structural break in the data 
generating process.) 

Our results show that using real-time rather than revised macroeconomic data yields estimates of 
business-cycle-sensitive systematic risk in the banking industry that are significantly different from 
estimates that are based on revised macroeconomic data. This difference between estimates is 
economically interesting for several reasons. For example, bank supervisors should account for this 
difference between estimates of systematic risk when measuring and controlling systematic risk in 
the banking industry in real time. As witnessed by the financial crisis of 2007/2009, banking 
supervisors and monetary authorities hardly can wait until revised macroeconomic data become 
available when deciding on important banking-regulation issues in times of market jitters and 
financial turmoil. What is needed in such turbulent times is a model that links 
business-cycle-sensitive systematic risk to real-time macroeconomic data. In a similar vein, because 
the risk premium fluctuates over time, our estimates may provide useful information for banks’ 
CEOs. If CEOs use real-time macroeconomic data rather than revised macroeconomic data for 
estimating business-cycle-sensitive-systematic risk in the banking industry, this may have profound 
implications for decisions regarding the rebalancing of asset portfolios and the underwriting of new 
capital. Finally, our results are useful in terms of economic model building. Our results reveal that the 
conditional variance of output growth is a significant component of the risk premium. In line with, 
for example, models of procyclical agency costs, our results indicate that the risk premium investors 
required for investing in stocks of banks fluctuated more strongly over the business cycle than the 
risk premium on the market portfolio. 

Our research goes beyond earlier empirical studies in empirical finance based on real-time 
macroeconomic data in several respects. First, Christoffersen et al. (2002) and Evans and Speight 
(2006) use cross-sectional risk-factor regressions to study the pricing of macroeconomic risk factors. 
Our empirical study, in contrast, is explicitly based on the SDF asset-pricing model. Our study, thus, 
differs from earlier studies in terms of the theoretical model that we use to motivate our empirical 
analysis. The SDF model encompasses various micro-founded asset pricing models and can be 
interpreted as an application of the Arrow-Debreu model to the pricing of risky assets in arbitrage 
free markets. 

Second, we used the SDF model to study time-varying business-cycle-sensitive risk in the 
banking industry by means of a MEGARCH-M model. Our empirical study, thus, differs in an 
important way from earlier real-time-data-based studies with respect to the empirical model that we 
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used to study real-time macroeconomic data. In our model, macroeconomic innovations can affect the 
time-varying mean and the time-varying conditional volatility of stock returns. In addition, the 
MEGARCH-M model embeds a vector autoregressive model that captures potential feedback effects 
of stock market developments on macroeconomic data. The global financial market crisis of 
2007/2009 witnesses the potential importance of such feedback effects. The potential importance of 
feedback effects also follows from models of the “financial accelerator” tracing back to the research of, 
for example, Bernanke and Gertler (1989), and others. 

Third, the way we measured real-time macroeconomic data differs from the approaches taken in 
earlier studies. For example, Pierdzioch et al. (2008) use real-time and revised macroeconomic data to 
analyze the out-of-sample predictability of stock returns. They use a recursive modelling approach 
that needs as data input entire vintages of real-time macroeconomic data. For our empirical study, in 
contrast, we constructed a time series of the real-time growth rate of macroeconomic data by using 
the last two observations from a vintage of macroeconomic data. This construction of the data implies 
that our analysis sheds light on how innovations in macroeconomic data affect time-varying 
business-cycle-sensitive risk in the banking industry rather than on the longer-run equilibrium link 
between the stock returns of banks and macroeconomic variables.  

In addition, in our empirical analyses, we were not interested in the type of out-of-sample 
predictability of stock returns analyzed by Pierdzioch et al. (2008). Rather, we studied the in-sample 
pricing of macroeconomic risk factors. The MEGARCH-M model is particularly suited to study the 
in-sample pricing of macroeconomic risk factors because it renders it possible to invoke several 
theoretically well-founded economic restrictions. Finally, our study goes beyond earlier studies in 
that we explicitly focus on the banking industry. 

We organize the remainder of this paper as follows. In Section 2, we lay out how we used the SDF 
model to derive our MEGARCH-M model. In Section 3, we describe the data we used in our 
empirical analysis. In Section 4, we report our empirical results. In Section 5, we offer some 
concluding remarks. 

2. The Empirical Model 

The stochastic discount factor (SDF) model provides a general framework for the pricing of assets 
in arbitrage-free markets. The SDF model stipulates that the expected stock returns of banks between 
period t  and period 1t +  satisfy the no-arbitrage condition 
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The SDF can be thought of as an application of the Arrow-Debreu general equilibrium model to 
arbitrage-free asset pricing (Campbell 2000). In the Arrow-Debreu general equilibrium model, 
uncertainty is modeled in terms of future states of nature, which will realize according to some 
probability law. In the absence of arbitrage opportunities, there exists a set of positive state prices, 
implying that the SDF is a random variable with positive realizations. If complete markets exist, then 
both the SDF and state prices are uniquely determined (Campbell 2000). The generality of the SDF 
model, as defined by Equation (1), implies that it encompasses various micro-founded asset-pricing 
models, and more flexible asset-pricing models based on a multidimensional modeling of risk 
factors. An example of the former is the standard capital asset pricing model (CAPM) (for survey of 
CAPM and CCAPM applications, see Smith and Wickens 2002). An example of the latter is the 
arbitrage pricing theory developed by Ross (1976) (for a survey, see Connors and Korajczyk 1995).  
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where 
1 1
ln

t t
m M
+ +
= , and 

t
V  and 

t
Cov  denote the conditional variance and covariance operators. 

A risk-free asset that yields a rate of return of 
1

f

t
r
+
 must satisfy the equation 

1
1 1 12

( ) ( ) 0f

t t t t t
E m r V m

+ + +
+ + = .                                     (3) 

Upon combining Equations (2) and (3), one gets 
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The right-hand side of Equation (4) represents the risk premium that stock market investors demand 

for bearing the risk in the banking industry. The term 1
12
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 captures a time-varying effect that 

arises because of Jensen’s inequality. 
We assume that the SDF can be expressed as a linear function of macroeconomic variables,
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2 1×  vector that contains data on the growth rate of output (industrial production) and data on the 
term spread. Equation (4) can then be rewritten as 
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The unrestricted version of Equation (5) that we used in our empirical analysis is given by 
2
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We opted for the MEGARCH-M model to estimate Equation (6). A key advantage of the 
MEGARCH-M model is that it can be used to estimate the time-varying conditional variance and 
covariances that feature prominently in Equation (6). The conditional mean equation of the 
MEGARCH-M model, written in the form of a vector autoregressive model (VAR), is given by 
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where A  is a 3 1×  vector, B  and Γ  are 3 3×  matrices, ( , , )'
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normally distributed zero-mean 3 1×  error vector with a time-varying conditional 

variance-covariance matrix, 
t
Σ . The vector 

t
Y  contains the growth rate of output, 

t
y∆ , the term 

spread, 
t
s , and (excess) returns on stocks of banks, 

t
r . Consistency with the SDF model requires that 

the third element of the vector A  and the third-row elements of the matrix B  are zero. The third 
row of the matrix Γ  contains both the effect capturing Jensen’s inequality and the time-varying 
covariances, and its first row and second row are zero. 

We used a triangular factorization to model the conditional variance-covariance matrix, 
t
Σ  

(Tsay 2002). The triangular factorization uses the fact that the Choleski decomposition of the 

positive-definite conditional variance-covariance matrix is given by '
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where the elements 
ij
l  represent the Choleski factors and the elements 

,ii t
g  can be interpreted as 

structural variances. 
The triangular factorization is based on a identification scheme that makes use of a recursive 

ordering of the endogenous variables in the VAR (Sims 1980). According to this identification 
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scheme the residuals of a reduced-form VAR can be decomposed into a series of structural residuals 
by invoking a set of restrictions on the contemporaneous relations among the endogenous variables 
of the VAR. Conceptually, the Choleski decomposition of the variance and covariance matrix of the 
innovations to the VAR is based on the idea that financial markets exhibit forward-looking behavior 
and may instantaneously react if new information regarding the stance of the business cycle become 
publicly available. Based on new information on the stance of the business cycle, investors can 
immediately reassess the risk of equity market investments. In contrast, output growth reacts only 
with a lag to innovations in financial market variables. In order to formalize this idea, a triangular 
factorization of the conditional variance and covariance matrix implies that an innovation to excess 
returns on stocks of banks is restricted to have no contemporaneous effect on the conditional 
variance of output growth and the term spread. An innovation to output growth, in contrast, can 
exert a contemporaneous effect on the conditional variances of the term spread and excess equity 
return. Moreover, an innovation to the term spread can have a contemporaneous effect on the 
conditional variance of excess equity returns, but not on the conditional variance of output growth. 
Finally, it should be noted that the Jensen effect indirectly accounts for the contribution to excess 
returns on stocks of banks of both the time-varying structural conditional variances of innovations to 
excess equity returns and the time-varying structural conditional variances of innovations to the 
macroeconomic variables.  

The triangular factorization ensures positive-definiteness of 
t
Σ  as long as the elements 

,ii t
g  are 

positive. In addition, the triangular factorization is an orthogonal transformation. This implies that 
the resulting likelihood function is extremely simple. The log-likelihood function to be maximized is 
given by (Tsay 2002): 
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where we have dropped a constant term. Estimation by quasi-maximum likelihood (QML) gives 
consistent estimates under weak assumptions even if the standardized residuals are not normally 
distributed (Bollerslev and Wooldridge 1992). We computed robust standard errors from the 
diagonal elements of the QML estimator. 

An EGARCH model (Nelson 1991), captures the dynamics of the structural variances, 
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means of the following equation: 
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where we have used the orthogonal transformations 
1, 1,t t
v u= , 

2, 2, 21 1,t t t
v u l u= − , and 

3, 3, 31 1, 32 2,t t t t
v u l u l u= − − . 

The EGARCH model has been used by Scruggs (1998) and Adrian and Rosenberg (2008) to model 
the equity risk premium. Consistent with the findings reported by Engle and Ng (1993), the EGARCH 

model implies that a negative realization of 
,i t
v  increases variances more than a positive realization 

of the same magnitude, provided 
2
0

i
α < . Moreover, a large negative (positive) realization of 

,i t
v  

raises variances more than a small negative (positive) shock, provided 
3
0

i
α > . 

3. The Data 

We collected monthly U.S. data for the sample period 1980–2006 on the growth rate of output 

(total industrial production), 
t
y∆ , the term spread, 

t
s , and excess returns of the stocks of banks, 

t
r . 
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The data we used to calculate 
t
s  and 

t
r  are from Thompson Financial Datastream. Returns are 

defined as the annualized month-to-month capital gain on the Datastream-calculated banking-sector 
index plus dividend yield. In order to compute excess returns, we subtracted from returns the 
3-month Treasury Bill rate. We used the latter together with the 10-year government bond yield to 
calculate the term spread. Chen et al. (1986) and Campbell (1987) analyze the term structure as a 
predictor of the variation in expected returns over time. Fama and French (1989) study the cyclical 
variation of the term spread over the business cycle. In a similar vein, Fama (1990) argues that the 
term structure captures cyclical variation in expected returns on stocks. The term spread in our model 
is similar to the excess bond return analyzed by Scruggs (1998). 

We calculated output growth as the annualized month-to-month rate of change in an industrial 
production index. To this end, we retrieved publicly available real-time data on industrial production 
from the website of the Federal Reserve Bank of Philadelphia (2006). As described in detailed in 
Croushore and Stark (2001), the real-time macroeconomic data are organized in vintages. A vintage 
contains the data that would have been available to equity market investors, regulators of the 
banking industry, and monetary authorities in real time. Successive vintage differ because (i) new 
data become available over time, and (ii) historical data are retroactively revised.  

The last vintage in our sample, released in January 2007, contains the most recent available 
macroeconomic data, also called “revised data”. We used the last vintage in our sample to compute 
the revised growth rate of output. In contrast, we computed a time series of the real-time growth rate 
of output by extracting from every vintage in our sample the last two observations. This computation 
is built on the notion that, in real time, stock market investors, bank supervisors, and monetary 
authorities use the most recent release of data to make inferences regarding the business-cycle 
sensitive risk in the banking industry. Our computation implies that a release in April of data on the 
growth rate of output in March affects the risk premium in April, not in March. 

Table 1 summarizes descriptive statistics. The sample mean of the growth rate of output 
measured with revised data is greater than the sample mean of the growth rate measured of output 
with real-time data. The sample standard deviation is comparable across the revised and the real-time 
growth rates. With regard to the coefficient of asymmetry, the data in general are negatively skewed, 
where excess equity returns are an exception. The negative skewness supports our decision to 
estimate a MEGARCH-M as a means to model the asymmetric sign and size effects in the data. The 
excess equity returns are positively but not significantly skewed. The data also appear to have 
leptokurtic (except for the term spread) and non-normal distributions. The quasi-maximum 
likelihood estimator produces consistent estimates even in case of deviations from normality. 

 
Table 1 

Summary of Descriptive Statistics 

Row Diagnostic 
Statistic 

Output Growth 
(Real-Time) 

Output Growth 
(Revised) 

Term Spread Excess Return 

1  Mean  1.8144  2.5405  1.7776  15.419 

2  Median  2.7170  3.1746  1.7900  16.697 

3  Maximum  24.911  26.837  4.4200  268.46 

4  Minimum -35.983 -31.746 -2.6500 -250.68 

5  Std. Dev.  7.7424  7.6478  1.2897  65.273 

6  Skewness -1.0044 -0.2651 -0.5890 -0.1864 

7  Kurtosis  6.3261  4.6863  3.1996  4.6901 

8 Jarque-Bera 0.0000 0.0000 0.0001 0.0000 

9 Q(12) 0.0000 0.0000 0.0000 0.0000 

Notes: This table summarizes descriptive statistics for output growth rate (measured with real-time and revised 
macroeconomic data), the term spread, and the excess returns on an index of the U.S. banking industry. 
Jarque-Bera represents the p-value of the test for non-normality of the distribution. Q(12) represents the p-value 
of the Ljung-Box Q-Test for autocorrelation of order 12 in squared values.  
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4. Empirical Results 

We present our empirical results in two steps. In a first step, we present results on the risk 
premium. In a second step, we report results on the conditional variances and the conditional-mean 
model implied by our MEGARCH-M model. 

4.1 The Risk Premium 

The solid line shown in Figure I shows the risk premium for investing in bank stocks that we 
obtained when we used real-time macroeconomic data to estimate our MEGARCH-M model. The 
dashed line shows the risk premium that we obtained when we used revised macroeconomic data. 
Consistent with Merton’s (1980) analysis, both the solid and the dashed lines are positive over the 
whole sample period. A comparison of the dashed line with the solid line reveals that estimates of the 
risk premium based on real-time macroeconomic data can substantially differ from estimates on 
revised macroeconomic data. This difference can have important implications for investors’ real-time 
assessment of the business-cycle-sensitive risk arising from investments in bank stocks. The 
difference can also be important for bank supervisors who seek to measure and control systematic 
risk in the banking industry. The difference between estimates of the risk premium based on real-time 
and revised macroeconomic data may also be important for banks' CEOs, who may use estimates of 
the risk premium for deciding whether to rebalance asset portfolios and to underwrite new capital.  
 

Figure I  
The Risk Premium 

 
Note: Solid lines (dashed lines) represent the real-time (revised) data. 

 
As regards the link between the risk in the banking industry and the business cycle, a few more 
remarks are in order. The risk premium was relatively large at the beginning of the sample period, 
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which follows the recession phase in the first half of the 1980 in the United States. The second half of 
the 1980s was a phase that witnessed a relatively low risk premium and a strong expansion of the 
economy. This phase, however, also saw months of a relatively large risk premium during and after 
the stock market crash in 1987. The recession of the U.S. economy in 1990/1991 is clearly marked by 
a rise in the risk premium. The risk premium was relatively small during the subsequent prolonged 
expansion until 2001. The risk premium substantially increased thereafter when the economy 
entered the recession of 2001. The estimated increase in the risk premium is somewhat stronger 
when revised rather than real-time macroeconomic data are used.  

Table 2 summarizes our results on the link between the risk premium and the business cycle. 
Panel A of Table 2 shows the average risk premium during expansions and during recessions. We 
defined expansions and recessions according to the NBER business-cycle-dating system. When 
estimates of our MEGARCH-M model are based on real-time macroeconomic data, the risk premium 
is 3.65 percentage points lower in expansions than in recessions. The risk premium is 6.86 percentage 
points lower in expansions than in recessions when revised macroeconomic data are used for 
estimation.  

Panel B of Table 2 shows the results that we obtained when we used data for the period 
1980–2006 on the returns on the S&P500 index to estimate our MEGARCH-M model. The risk 
premium is smaller when the S&P500 index is used for estimation, which is likely to reflect 
diversification effects. More interesting is the result that, as compared to the results for the banking 
industry, the increase in the risk premium during a recession is much smaller in the case of the 
S&P500 index. If real-time macroeconomic data are used for estimation, the risk premium only 
increases by approximately 1.3 percentage points. If revised macroeconomic data are used for 
estimation, the risk premium increases by about 3.6 percentage points. Thus, the cyclical variation in 
the risk premium investors require for investing in the S&P500 index is much smaller than the 
cyclical variation in the risk premium investors require for investing in the banking industry. The 
differences between the results reported for the S&P500 index and the banking industry may reflect, 
apart from diversification effects, that the risk of investing in the banking industry is particularly 
sensitive to business-cycle fluctuations. 

Table 2 
Expansions, Recessions, and the Risk Premium 

Panel A  
 

Banking Industry Expansion Recession 

Real-time data 4.34 7.99 

Revised data 9.76 16.62 

 
Panel B  
 

S&P500 Expansion Recession 

Real-time data 2.55 3.86 

Revised data 7.98 11.62 

Notes: This table summarizes the average risk premium (based on real-time macroeconomic data and based on 
revised macroeconomic data) in economic expansions and recessions.  Economic expansions and recessions are 
defined according to the NBER business-cycle dating system.  

 
Table 2 further shows that the risk premium that investors demand for investing in the stocks of 

banks is lower when real-time macroeconomic data are used for estimation than when revised 
macroeconomic data are used. This result holds irrespective of whether the economy experienced an 
expansion or a recession.  

A closer look at the components of the risk premium yields further interesting insights. The two 
components of the risk premium shown in Figure II are the output-growth component and the 
term-spread component.  
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Figure II 
Components of the Risk Premium 

 

 
Note: Solid lines (dashed lines) represent the real-time (revised) data. 

 
Panel A graphs the output-growth component and Panel B sketches the term-spread component. 

The output-growth component was on average larger than the term-spread component. Moreover, 
both components of the risk premium were lower when estimated with real-time rather than with 
revised macroeconomic data. Only at the beginning of the 1980s was the term-spread component 
estimated based on real-time macroeconomic data larger than the term-spread component estimated 
based on revised macroeconomic data. During the first years of the 1980s, bond-market volatility 
was considerably higher than during the rest of the sample, probably reflecting uncertainty about 
the stance of monetary policy (Elyasiani and Mansur 1998). 

The estimation results summarized in Tables 3 and 4 show that the output-growth component is 
significant when real-time macroeconomic data are used to estimate our MEGARCH-M model. The 
term-spread component is insignificant, irrespective of whether real-time or revised macroeconomic 
data are used for estimation. The coefficient capturing Jensen’s inequality is significant when 
estimates are based on real-time macroeconomic data. 

4.2 The Conditional Variances and the Conditional-Mean Model 

The estimated time-varying conditional variances graphed in Figure III suggest that the risk 
premium was mainly determined by the conditional variance of the growth rate of output. The 
conditional variance of the term spread may have contributed to the risk premium at the beginning 
of the sample, following the monetary regime change that took place in 1979. During the remainder 
of the sample, the conditional variance of the term spread was small.  
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The conditional variance of output growth is often larger when it is estimated with revised 
rather than with real-time macroeconomic data. Furthermore, in periods of high output volatility 
and, thus, large uncertainty about the stance of the business cycle potential problems due to, for 
example, asymmetric information and moral hazard are likely to aggravate, which, in turn, may be 
reflected in estimates of the risk premium. 

The parameter estimates summarized in Tables 3 and 4 suggest that the GARCH effects are close 
to unity, suggesting that changes in the conditional variances are very persistent. The size effect is 
significant and the corresponding coefficient has the expected positive sign. This result implies that a 
large shock increases the conditional variances more than a small shock. The asymmetric sign effect 
has the expected negative sign. The sign effect is less precisely estimated than the size effect, 
particularly when the estimates are based on revised macroeconomic data. The conditional means of 
the growth rate of output and the term spread are primarily determined by their respective lags.  
The term spread follows a highly persistent autoregressive process. Moreover, when real-time 
macroeconomic data are used for estimation, the term spread exerts a significant positive effect on 
the growth rate of output. This result is consistent with the results reported by Estrella (2005). The 
estimated conditional mean-model further reveals that the growth rate of output exerts a significant 
negative effect on the term spread. Finally, the excess returns on the stocks of banks do not appear to 
be a significant factor driving the conditional means of the growth rate of output and the term 
spread. 

 
Figure III 

Conditional Variances 

 
 
 

 
 



Banks, Risk, and the Business Cycle: An Analysis Based on Real-Time Data                          67 

 

 
 
 

Table 3 
The MEGARCH-M Model with Real-Time Macroeconomic Data 

Row Variable Output Growth Term Spread Excess Return 

 Conditional means 

1 Constant 0.2134 (0.4565) 0.0336 (0.0013)  

2 ∆yt-1 0.4428 (0.0000) -0.0097 (0.0017)  

3 st-1 0.4764 (0.0006) 0.9837 (0.0000)  

4 rt-1 0.0032 (0.4653) 0.0001 (0.7416)  

5 Vt-1(rt)   0.0027 (0.0006) 

6 Covt-1(rt, ∆yt)   19.860 (0.0577) 

7 Covt-1(rt, s t)   -23.8848 (0.7164) 

 

Conditional variances 

8 Constant 1.1174 (0.0000) -0.0224 (0.0055) 0.5593 (0.0000) 

9 GARCH 0.6928 (0.0000) 0.9911 (0.0000) 0.9316 (0.0000) 

10 Sign ARCH -0.2041 (0.0010) -0.0582 (0.0348) -0.0612 (0.1780) 

11 Size ARCH 0.5307 (0.0000) 0.2627 (0.0000) 0.2670 (0.0016) 

 
Conditional correlations 

12 Chol \ Corr 1.0000 (1.0000) -0.1184 (0.0200)  0.0006 (0.0156) 

13 Chol \ Corr -0.0052 (0.0102) 1.0000 (1.0000) -0.0007 (0.1526) 

14 Chol \ Corr  0.0051 (0.0562) -0.1153 (0.7213) 1.0000 (1.0000) 

15 LogL -1993.90 

Notes: This table shows estimates of our MEGARCH-M model (corresponding p-values are given in 
parentheses) based on real-time data on industrial production. We estimated the model using monthly data 
spanning the period from 1980/1 to 2006/11. We performed a triangular factorization of the variance-covariance 
matrix to identify the structural innovations of the model. We ordered the growth rate of industrial production 
first, the term spread second, and excess equity returns third. In Rows 1-7, we report estimates of the conditional 
mean model. In Rows 8-11, we report estimates of the conditional variance model. In Rows 12-14, we report 
estimates of the off-diagonal elements lij of the Choleski factor matrix (lower triangular matrix) and the implied 

correlations (upper triangular matrix) with the corresponding asymptotic p-values in parentheses. The implied 
correlations are given by the sample mean of the time-varying correlations. In Row 15, we report the value of the 
log-likelihood function. We performed the estimation of the model using the robust quasi-maximum likelihood 
(QML) estimation of the variance-covariance matrix suggested by Bollerslev and Wooldridge (1992). 
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Table 4 
The MEGARCH-M Model with Revised Macroeconomic Data 

Row Variable Output Growth Term Spread Excess Return 

 Conditional means 

1 Constant 1.3864 (0.1012) 0.0214 (0.4643)  

2 ∆yt-1 0.1728 (0.0034) -0.0045 (0.0215)  

3 st-1 0.5109 (0.1163) 0.9874 (0.0000)  

4 rt-1 0.0036 (0.4146) 0.0001 (0.6638)  

5 Vt-1(rt)   0.0017 (0.2687) 

6 Covt-1(rt, ∆yt)   0.3888 (0.4389) 

7 Covt-1(rt, s t)   65.9158 (0.3105) 

 
Conditional variances 

8 Constant 0.9393 (0.2283) -0.0287 (0.4464) 0.6160 (0.0290) 

9 GARCH 0.7565 (0.0001) 0.9881 (0.0000) 0.9246 (0.0000) 

10 Sign ARCH -0.2097 (0.0034) -0.0270 (0.5963) -0.0786 (0.0709) 

11 Size ARCH 0.2185 (0.0406) 0.2744 (0.0341) 0.2748 (0.0000) 

 

Conditional correlations 

12 Chol \ Corr 1.0000 (1.0000) 0.0045 (0.0042) 0.0505 (0.0012) 

13 Chol \ Corr 0.0002 (0.9212) 1.0000 (1.0000) 0.0004 (0.0062) 

14 Chol \ Corr 0.4222 (0.3339) 0.0221 (0.8978) 1.0000 (1.0000) 

15 LogL -2040.88 

Notes: This table shows estimates of our MEGARCH-M model (corresponding p-values are given in 
parentheses) based on revised data on industrial production. We estimated the model using monthly data 
spanning the period from 1980/1 to 2006/11. We performed a triangular factorization of the variance-covariance 
matrix to identify the structural innovations of the model. We ordered the growth rate of industrial production 
first, the term spread second, and excess equity returns third. In Rows 1-7, we report estimates of the conditional 
mean model. In Rows 8-11, we report estimates of the conditional variance model. In Rows 12-14, we report 
estimates of the off-diagonal elements lij of the Choleski factor matrix (lower triangular matrix) and the implied 
correlations (upper triangular matrix) with the corresponding asymptotic p-values in parentheses. The implied 
correlations are given by the sample mean of the time-varying correlations. In Row 15, we report the value of the 
log-likelihood function. We performed the estimation of the model using the robust quasi-maximum likelihood 
(QML) estimation of the variance-covariance matrix suggested by Bollerslev and Wooldridge (1992). 
 

The diagnostic tests summarized in Table 5 indicate that the MEGARCH-M model does a reasonably 
good job in capturing the dynamics of the conditional variance-covariance matrix. The diagnostic 
tests suggest that there is no remaining autocorrelation in the squared standardized residual up to 
order 12. The validity of the specification of the model is further corroborated by the Sign bias, 
Negative bias, Positive bias, and Joint tests, proposed by Engle and Ng (1993). Moreover, the 
MEGARCH-M model is supported by the orthogonality conditions for the first, second, third, and 
fourth moments (Nelson 1991). It should also be noted that the MEGARCH-M model fits well the 
dynamics of both the real-time and the revised macroeconomic data. 

We further studied whether the risk premium based on real-time macroeconomic data is 
statistically different from the risk premium estimated from revised macroeconomic data. To this 
end, we used a t-test (Wilcoxon/Mann-Whitney test, F-test) to test for differences between the means 
(medians, variances) of the estimates of the risk premium. Table 6 summarizes the results. The mean, 
median, and variance of the risk premium estimated based on real-time macroeconomic data 
significantly differ from the mean, median, and variance estimated based on revised macroeconomic 
data. In economic terms, differences between the estimates of the risk premium based on real-time 
and revised macroeconomic data can arise because, when an investor uses real-time data to make 
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inferences about the risk premium, he or she must take into account that the then available real-time 
data will be revised a number of times and more data will become available in the future. The results 
of tests for significance suggest that investor’s ex-ante (i.e., using real-time macroeconomic data) 
evaluation of the risk of equity market investments in the banking sector significantly differs from 
the ex-post evaluation of risk, which can be evaluated based on revised macroeconomic data. 
 

Table 5 
Diagnostic Statistics for the MEGARCH-M Model 

Panel A: Real-Time Macroeconomic Data 
 

Row Diagnostic Statistic Output Growth Term Spread Excess Return 

1 Q(12) 0.3456 0.1119 0.9970 

2 Sign Bias 0.8684 0.3935 0.2209 

3 Neg. Size Bias 0.9227 0.5842 0.5106 

4 Pos. Size Bias 0.4820 0.1849 0.2574 

5 Joint 0.8816 0.6208 0.6404 

6 E(z)=0 0.9253 0.5069 0.9849 

7 E(z2)=0 0.9931 0.7037 >0.9999 

8 E(z3)=0 0.8020 0.4130 0.1876 

9 E(z4)=0 0.7170 0.2203 0.4756 

 
Panel B: Revised Macroeconomic Data 
 

Row Diagnostic Statistic Output Growth Term Spread Excess Return 

1 Q(12) 0.3195 0.1208 0.9954 

2 Sign Bias 0.9512 0.1614 0.1941 

3 Neg. Size Bias 0.2414 0.2120 0.5789 

4 Pos. Size Bias 0.4908 0.1464 0.2441 

5 Joint 0.2902 0.4410 0.5794 

6 E(z)=0 0.8117 0.6675 0.9335 

7 E(z2)=0 0.9803 0.7162 0.9864 

8 E(z3)=0 0.4320 0.4564 0.1673 

9 E(z4)=0 0.3764 0.2238 0.4872 

Notes: This table summarizes diagnostic statistics for the standardized residuals, z, of the MEGARCH-M model 
(p-values). Q(12) denotes the results of a Ljung-Box Q-Test for autocorrelation of order 12 in squared 
standardized residuals. The Sign bias, Negative bias, Positive Bias, and Joint tests were computed as described 
by Engle and Ng (1993). The orthogonality conditions for the first four moments of standardized residuals were 
computed as described by Nelson (1991). We estimated the model using monthly data for the period 
1980/1-2006/11. Panel A summarizes the diagnostic statistics using real-time macroeconomic data. Panel B 
summarizes the diagnostic statistics using revised macroeconomic data. 

 

5. Concluding Remarks 

Our main result is that using real-time rather than revised macroeconomic data can have 
profound implications for estimates of the risk premium investors require for investing in the stocks 
of banks. This main result illustrates that the risk premium that stock market investors, based on 
real-time macroeconomic data, require for investing in the stocks of banks may be significantly 
different from the risk premium derived in retrospect by researchers based on revised 
macroeconomic data. As one would have expected, another result of our empirical analysis is that 
the risk premium that is required for investing in the banking industry is more sensitive to 
business-cycle fluctuations than the risk premium on investments in a more diversified portfolio, 
such as the S&P500 stock index. In light of this result, the choice between real-time data or revised 
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macroeconomic data is of particular relevance for studying the risk premium in empirical analyses 
of the banking industry.  

A natural question to be explored in future research is whether the finding that using real-time 
rather than revised macroeconomic data can give rise to significantly different estimates of the risk 
premium can be corroborated for other countries other than the United States.  

 
Table 6 

Differences between Estimates of the Risk Premium 

Differences Between Means 

 Sample Period 
Real-Time 

Macroeconomic Data 
Revised Macroeconomic 

Data 
t-test 

 1980/01–2006/11 5.0438 9.1124 10.9731*** 

Differences Between Medians 

 Sample Period 
Real-Time 

Macroeconomic Data 
Revised Macroeconomic 

Data 
Wilcoxon/Mann-Whitney-test 

 1980/01–2006/11 3.6383 7.6560 14.7775*** 

Differences Between Variances 

 Sample Period 
Real-Time 

Macroeconomic Data 
Revised Macroeconomic 

Data 
F-test 

 1980/01–2006/11 4.1700 5.1844 1.5457*** 

Notes: This table summarizes results of tests for significance of the differences between the mean, median, and 
variance of the risk premium in the banking sector based on real-time macroeconomic data and the mean, 
median, and variance of the risk premium in the banking sector based on revised macroeconomic data. The test 
for significance of the difference in the means (medians, variances) is a t-test (Wilcoxon/Mann-Whitney test, 
F-test). We report the results of our MEGARCH-M model that features the growth rate of industrial production, 
the term spread, and excess equity returns in the banking sector. We estimated the models using monthly data 
for the period from 1980/1 to 2006/11. We performed a triangular factorization of the variance-covariance 
matrix to identify the structural innovations of the model. We performed the estimation of the model using the 
robust quasi-maximum likelihood (QML) estimation of the variance-covariance matrix suggested by Bollerslev 
and Wooldridge (1992). An asterisk *** denotes significance at the one percent level. 
 

   Specifically, it would be interesting to study whether the differential effect of using real-time 
versus revised macroeconomic data on the risk premium depends upon financial architecture. Many 
researchers have examined the relative performance of bank-based and market-based economies and 
have concluded that financial architecture may matter for long-term economic growth (Levine 2002, 
Levine and Zervos 1998, Tadesse 2006, among others). Future research could benefit from studying 
whether (i) the response of the risk premium in the banking industry to changes in the stance of the 
business cycle depends upon financial architecture, and (ii) whether the differential effect of using 
real-time versus revised macroeconomic data varies across bank-based and market-oriented 
financial systems. In this respect, it would also be interesting to study whether banking regulation 
matters for the estimates of the risk premium using real-time and revised macroeconomic data. 

References 

Adrian, T., and J. Rosenberg, 2008, Stock Returns and Volatility: Pricing the Long-Run and 
Short-Run Components of Market Risk. Journal of Finance 63, 2997 – 3030. 

Baele, L., R. Vander Vennet, and A. Van Landschoot, 2004, Bank Risk Strategies and Cyclical 
Variation in Bank Stock Returns. Manuscript, University of Ghent. 

Bernanke, B.S., and M. Gertler, 1989, Agency Costs, Net Worth, and Business Fluctuations. American 

Economic Review 79, 14 – 31. 

Bollerslev, T., and J.M. Wooldridge, 1992, Quasi-Maximum Likelihood Estimation and Inference in 
Dynamic Models with Time-Varying Covariances. Econometric Reviews 11, 143 – 172. 

Campbell, J., 1987, Stock Returns and the Term Structure. Journal of Financial Economics 18, 373 – 399. 



Banks, Risk, and the Business Cycle: An Analysis Based on Real-Time Data                          71 

Campbell, John Y., 2000, Asset Pricing At The Millennium. Journal of Finance 55, 1515 – 1567. 

Chen, N., R. Roll, and S. Ross, 1986, Economic Forces and the Stock Market. Journal of Business 59, 

383 – 403. 

Christoffersen, P., E. Ghysels, and N.R. Swanson, 2002, Let’s Get “Real” about Using Economic Data. 
Journal of Empirical Finance 9, 343 – 360. 

Connor, G., R.A. Korajczyk, 1995, The Arbitrage Pricing Theory and Multifactor Models of Asset 
Returns. In: Finance, Handbooks in Operations Research and Management Science, vol. 9, eds R.A. 

Jarrow, V. Maksimovic, and W.T. Ziemba, Amsterdam: North Holland. 

Croushore, D., and T. Stark, 2001, A Real Time Data Set for Macroeconomists. Journal of Econometrics 

105, 111 – 130. 

Dewenter, K.L., and A.C. Hess, 1989, An International Comparison of Banks’ Equity Returns. Journal 

of Money, Credit, and Banking 30, 472 – 492. 

Diamond, D.W., 1983, Financial Intermediation and Delegated Monitoring. Review of Economic 

Studies 51, 393 – 414. 

Döpke, J., D. Hartmann, and C. Pierdzioch, 2008, Real-Time Macroeconomic Data and Ex Ante Stock 
Return Predictability. International Review of Financial Analysis 17, 274 – 290. 

Elyasiani, E., and I. Mansur, 1998, Sensitivity of the Banking Stock Returns Distribution to Changes 
in the Volatility of Interest Rates: A GARCH-M Model. Journal of Banking and Finance 22, 535 – 

563. 

Engle, R., and V. Ng, 1993, Measuring and Testing the Impact of News on Volatility. Journal of 
Finance 48, 1749 – 1778. 

Estrella, A., 2005, Why Does the Yield Curve Predict Output and Inflation? Economic Journal 115, 722 

– 744. 

Evans, K.P., and A.E.H. Speight, 2006, Real-Time Risk Pricing over the Business Cycle: Some 
Evidence for the UK. Journal of Business Finance and Accounting 33, 263 – 283. 

Fama, E.F., 1990, Stock Returns, Expected Returns, and Real Activity. Journal of Finance 45, 1089 – 

1108. 

Federal Reserve Bank of Philadelphia, 2006, Economic Research. A Real-Time Data Set. Data 

downloaded in January 2007 [http://www.phil.frb.org/econ/forecast/reaindex.html]. 

Kiyotaki, N., and J. Moore, 1997, Credit Cycles. Journal of Political Economy 105, 211 – 248. 

Levine. R., and S. Zervos, 1998, Stock Markets, Banks, and Economic Growth. American Economic 

Review 88, 537 – 559. 

Levine, R., 2002, Bank-Based or Market-Based Financial Systems: Which is Better? Journal of Financial 

Intermediation 11, 398 – 428. 

Merton, R.C., 1980, On Estimating the Expected Return on the Market: An Explanatory Investigation. 
Journal of Financial Economics 8, 323 – 361. 

Nelson, D., 1991, Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 

59, 347 – 370. 

Rajan, R.G., 1994, Why Bank Credit Policies Fluctuate: A Theory and Some Evidence. Quarterly 

Journal of Economics 109, 399 – 441. 

Ross, S.A., 1976, The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory 13, 341 – 

360. 

Scruggs, J.T., 1998, Resolving the Puzzling Intertemporal Relation between the Market Risk 
Premium and Conditional Market Variance: A Two-Factor Approach. Journal of Finance 53, 575 

– 603. 

Smith, P., and M.R. Wickens, 2002, Asset Pricing with Observable Stochastic Discount Factors. 
Journal of Economic Surveys 16, 397 – 446. 



72                              Banking and Finance Review                           1 •2010 

Smith, P., S. Sorensen, and M.R. Wickens, 2009, The equity premium and the business cycle: the role 
of demand and supply shocks. International Journal of Finance and Economics, 15, 134 – 152. 

Song, F., 1994, A Two-Factor ARCH Model for Deposit-Institution Stock Returns. Journal of Money, 

Credit, and Banking 26, 323 – 340. 

Tadesse, S., 2006, Innovation, Information and Financial Architecture. Journal of Financial and 

Quantitative Analysis 41, 753 – 786. 

Tsay, R.S., 2002, Analysis of Financial Time Series. New York: Wiley. 


